找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Theory of Ordinary Differential Equations; Po-Fang Hsieh,Yasutaka Sibuya Textbook 1999 Springer Science+Business Media New York 1999

[復(fù)制鏈接]
樓主: 滲漏
11#
發(fā)表于 2025-3-23 12:02:33 | 只看該作者
https://doi.org/10.1007/978-3-030-66792-4roblems (§§VI2—VI-4, topics including Green’s functions, self-adjointness, distribution of eigen-values, and eigenfunction expansion), (3) scattering problems (§§VI-5—VI-9, mostly focusing on reflectionless potentials), and (4) periodic potentials (§VI-10). The materials concerning these topics are
12#
發(fā)表于 2025-3-23 14:21:29 | 只看該作者
https://doi.org/10.1007/978-3-030-66792-4rpose is to show how much information we can glean from the limit matrix.. We are interested in the exponential growth of solutions and the asymptotic behavior of solutions. In order to measure the exponential growth of a function, we use Liapounoff’s type numbers which was originally introduced by
13#
發(fā)表于 2025-3-23 19:06:10 | 只看該作者
14#
發(fā)表于 2025-3-23 23:36:52 | 只看該作者
15#
發(fā)表于 2025-3-24 04:30:12 | 只看該作者
16#
發(fā)表于 2025-3-24 09:23:39 | 只看該作者
Anderson Transitions and Interactionsmple, as we mentioned it in Remark V-1-4, the divergent formal power series.is a formal solution of ..This equation has an actual solution .Integrating by parts,we obtain. Since.we conclude that.an asymptotic representation of an actual solution by means of a formal solution. In this chapter, we exp
17#
發(fā)表于 2025-3-24 14:36:29 | 只看該作者
18#
發(fā)表于 2025-3-24 16:55:01 | 只看該作者
19#
發(fā)表于 2025-3-24 20:13:26 | 只看該作者
20#
發(fā)表于 2025-3-25 02:35:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 09:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
婺源县| 霍邱县| 灌云县| 珠海市| 咸阳市| 潜山县| 方城县| 偏关县| 金乡县| 绥化市| 油尖旺区| 依兰县| 尼勒克县| 垦利县| 巧家县| 阜新市| 泗水县| 安多县| 汾阳市| 丹江口市| 阳城县| 庆阳市| 宁都县| 宜君县| 甘南县| 厦门市| 新乡县| 汕头市| 靖西县| 紫阳县| 佛教| 台州市| 云梦县| 咸阳市| 扶绥县| 兴山县| 卓尼县| 昌吉市| 连南| 塔城市| 英超|