找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Number Theory.; André Weil Book 19732nd edition Springer-Verlag Berlin Heidelberg 1973 Cantor.Mathematica.number theory

[復制鏈接]
樓主: Enclosure
21#
發(fā)表于 2025-3-25 06:22:29 | 只看該作者
22#
發(fā)表于 2025-3-25 07:36:11 | 只看該作者
The theorem of Riemann-Rocho algebraic geometry; this lies outside the scope of this book. The results to be given here should be regarded chiefly as an illustration for the methods developed above and as an introduction to a more general theory.
23#
發(fā)表于 2025-3-25 15:29:15 | 只看該作者
Simple algebrashe same properties. Tensor-products will be understood to be taken over the groundfield ; thus we write .?. instead of .?.. when . are algebras over ., and .?. or .., instead of .?.., when . is an algebra over . and . a field containing .. being always considered as an algebra over ..
24#
發(fā)表于 2025-3-25 18:50:39 | 只看該作者
25#
發(fā)表于 2025-3-25 20:49:16 | 只看該作者
26#
發(fā)表于 2025-3-26 02:04:34 | 只看該作者
27#
發(fā)表于 2025-3-26 06:13:41 | 只看該作者
Simple algebras over A-fields; the algebra .(.) is uniquely determined up to an isomorphism, and .(.) and .(.) are uniquely determined. One says that . is . or . at . according as .. is trivial over .. or not, i. e. according as .(.) =1 or .(.)>1.
28#
發(fā)表于 2025-3-26 09:19:23 | 只看該作者
Global classfield theory–1, for that of ?. into ?. We write .. for the group of characters of ?, or, what amounts to the same, of ?; for each . ∈ .., we write ..=.°.. this is a character of ?., or, what amounts to the same, of ?..
29#
發(fā)表于 2025-3-26 15:10:53 | 只看該作者
Herrschaft - Staat - Mitbestimmungor all . not in . If . is also a finite set of places of ., and .., then ..(.) is contained in ..(.); moreover, its topology and its ring structure are those induced by those of ..(.) and ..(.) is an open subset of ..(.).
30#
發(fā)表于 2025-3-26 20:04:35 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 07:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
沙湾县| 濉溪县| 吴堡县| 彭泽县| 芜湖市| 筠连县| 遂川县| 丰都县| 慈利县| 镇雄县| 蒙阴县| 喀喇沁旗| 大方县| 永顺县| 莒南县| 慈溪市| 木兰县| 曲松县| 上饶县| 宿松县| 崇左市| 兴安盟| 宜川县| 虞城县| 五原县| 梓潼县| 武平县| 伊吾县| 象山县| 高陵县| 三明市| 托里县| 平陆县| 苍溪县| 临汾市| 无棣县| 华阴市| 兴仁县| 贞丰县| 民丰县| 乌拉特前旗|