找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Number Theory.; André Weil Book 19732nd edition Springer-Verlag Berlin Heidelberg 1973 Cantor.Mathematica.number theory

[復(fù)制鏈接]
樓主: Enclosure
21#
發(fā)表于 2025-3-25 06:22:29 | 只看該作者
22#
發(fā)表于 2025-3-25 07:36:11 | 只看該作者
The theorem of Riemann-Rocho algebraic geometry; this lies outside the scope of this book. The results to be given here should be regarded chiefly as an illustration for the methods developed above and as an introduction to a more general theory.
23#
發(fā)表于 2025-3-25 15:29:15 | 只看該作者
Simple algebrashe same properties. Tensor-products will be understood to be taken over the groundfield ; thus we write .?. instead of .?.. when . are algebras over ., and .?. or .., instead of .?.., when . is an algebra over . and . a field containing .. being always considered as an algebra over ..
24#
發(fā)表于 2025-3-25 18:50:39 | 只看該作者
25#
發(fā)表于 2025-3-25 20:49:16 | 只看該作者
26#
發(fā)表于 2025-3-26 02:04:34 | 只看該作者
27#
發(fā)表于 2025-3-26 06:13:41 | 只看該作者
Simple algebras over A-fields; the algebra .(.) is uniquely determined up to an isomorphism, and .(.) and .(.) are uniquely determined. One says that . is . or . at . according as .. is trivial over .. or not, i. e. according as .(.) =1 or .(.)>1.
28#
發(fā)表于 2025-3-26 09:19:23 | 只看該作者
Global classfield theory–1, for that of ?. into ?. We write .. for the group of characters of ?, or, what amounts to the same, of ?; for each . ∈ .., we write ..=.°.. this is a character of ?., or, what amounts to the same, of ?..
29#
發(fā)表于 2025-3-26 15:10:53 | 只看該作者
Herrschaft - Staat - Mitbestimmungor all . not in . If . is also a finite set of places of ., and .., then ..(.) is contained in ..(.); moreover, its topology and its ring structure are those induced by those of ..(.) and ..(.) is an open subset of ..(.).
30#
發(fā)表于 2025-3-26 20:04:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 10:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新巴尔虎右旗| 莫力| 新龙县| 新蔡县| 日土县| 莱西市| 紫金县| 石家庄市| 岐山县| 叙永县| 化德县| 礼泉县| 长乐市| 黔江区| 承德县| 偃师市| 关岭| 朝阳县| 京山县| 高陵县| 虹口区| 罗田县| 察隅县| 新竹县| 锡林浩特市| 兰西县| 新郑市| 苍溪县| 拉萨市| 通州区| 榆社县| 吕梁市| 萝北县| 呼玛县| 旅游| 墨玉县| 宣武区| 色达县| 唐河县| 烟台市| 天镇县|