找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Linear Algebra; Thomas S. Blyth,Edmund F. Robertson Textbook 19981st edition Springer-Verlag London 1998 Eigenvalue.Eigenvector.Matr

[復(fù)制鏈接]
樓主: negation
11#
發(fā)表于 2025-3-23 11:48:43 | 只看該作者
https://doi.org/10.1007/978-3-642-79107-9In what follows it will be convenient to write an . × . matrix A in the form . where, as before, .., represents the .-th column of .. Also, the letter . will signify either the field ?; of real numbers or the field ? of complex numbers.
12#
發(fā)表于 2025-3-23 15:15:29 | 只看該作者
Sylvie Cabrit,Alex Raga,Frederic GuethIn Chapter 9 we introduced the notions of . and . of a matrix or of a linear mapping. There we concentrated our attention on showing the importance of these notions in solving particular problems. Here we shall take a closer algebraic look.
13#
發(fā)表于 2025-3-23 21:10:06 | 只看該作者
14#
發(fā)表于 2025-3-24 01:28:56 | 只看該作者
Some Applications of Matrices,We shall now give brief descriptions of some situations to which matrix theory finds a natural application, and some problems to which the solutions are determined by the algebra that we have developed. Some of these applications will be dealt with in greater detail in later chapters.
15#
發(fā)表于 2025-3-24 04:36:23 | 只看該作者
Systems of Linear Equations,We shall now consider in some detail a systematic method of solving systems of linear equations. In working with such systems, there are three basic operations involved:
16#
發(fā)表于 2025-3-24 10:24:41 | 只看該作者
Invertible Matrices,In Theorem 1.3 we showed that every . matrix . has an additive inverse, denoted by ?A, which is the unique . × . matrix . that satisfies the equation . + . = 0. We shall now consider the multiplicative analogue of this.
17#
發(fā)表于 2025-3-24 11:18:53 | 只看該作者
18#
發(fā)表于 2025-3-24 18:31:48 | 只看該作者
Linear Mappings,In the study of any algebraic structure there are two concepts that are of paramount importance. The first is that of a . (i.e. a subset with the same type of structure), and the second is that of a . (i.e. a mapping from one structure to another of the same kind that is ‘structure-preserving’).
19#
發(fā)表于 2025-3-24 20:05:44 | 只看該作者
The Matrix Connection,We shall now proceed to show how a linear mapping from one finite-dimensional vector space to another can be represented by a matrix. For this purpose, we require the following notion.
20#
發(fā)表于 2025-3-25 01:08:39 | 只看該作者
Determinants,In what follows it will be convenient to write an . × . matrix A in the form . where, as before, .., represents the .-th column of .. Also, the letter . will signify either the field ?; of real numbers or the field ? of complex numbers.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 14:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通海县| 泰安市| 江山市| 钟祥市| 密山市| 云林县| 永登县| 宝鸡市| 光泽县| 深圳市| 定陶县| 吉木萨尔县| 玉山县| 宝清县| 海晏县| 诏安县| 宁强县| 来安县| 金昌市| 崇礼县| 涿州市| 德庆县| 南木林县| 滁州市| 南汇区| 施秉县| 苗栗县| 汝南县| 重庆市| 连云港市| 大姚县| 鞍山市| 麻城市| 府谷县| 镇原县| 铁岭市| 济宁市| 会宁县| 黑山县| 鲁山县| 临武县|