找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Homological Algebra; M. Scott Osborne Textbook 2000 Springer Science+Business Media New York 2000 Adjoint functor.Homological algeb

[復制鏈接]
樓主: HARDY
21#
發(fā)表于 2025-3-25 04:53:06 | 只看該作者
22#
發(fā)表于 2025-3-25 07:59:22 | 只看該作者
Martin Goodman MD,David A. Geller MDIn what follows, .. We shall use the following notation, with . (or .) being a ring:
23#
發(fā)表于 2025-3-25 14:57:53 | 只看該作者
24#
發(fā)表于 2025-3-25 16:16:53 | 只看該作者
25#
發(fā)表于 2025-3-25 22:50:34 | 只看該作者
Michele Valiante,Paola GrammaticoA close look at much of the earlier material, especially in the last chapter, reveals the strong connection between projectives and injectives. The idea is this: Formulate your result purely in terms of arrows (morphisms), then reverse them. That is, work in the opposite category. Not everything can be done this way, but a surprising amount can.
26#
發(fā)表于 2025-3-26 03:01:41 | 只看該作者
Pathology of Hepatocellular CarcinomaThis section uses material from Chapters 1 and 2.
27#
發(fā)表于 2025-3-26 07:37:39 | 只看該作者
Categories,Homological algebra addresses questions that appear naturally in category theory, so category theory is a good starting point. Most of what follows is standard, but there are a few slippery points.
28#
發(fā)表于 2025-3-26 10:39:34 | 只看該作者
29#
發(fā)表于 2025-3-26 13:53:22 | 只看該作者
30#
發(fā)表于 2025-3-26 16:50:23 | 只看該作者
Derived Functors,The purpose of this chapter and the next is to generalize the earlier constructions of Ext and Tor. In this chapter, functors beyond Horn and ? will be applied to projective (and injective) resolutions in .. In the next chapter, these constructions will be carried out in more general categories.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-9 23:55
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
麻阳| 竹北市| 外汇| 永仁县| 东平县| 稻城县| 河南省| 闵行区| 慈利县| 敦化市| 应城市| 堆龙德庆县| 上犹县| 平和县| 扶风县| 屯门区| 子长县| 德令哈市| 和平县| 通渭县| 宁阳县| 深州市| 衡南县| 犍为县| 攀枝花市| 钟山县| 余姚市| 民丰县| 高邮市| 青神县| 无极县| 桂阳县| 固始县| 霍林郭勒市| 新营市| 孙吴县| 开封市| 安吉县| 微山县| 哈尔滨市| 高密市|