找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Homological Algebra; M. Scott Osborne Textbook 2000 Springer Science+Business Media New York 2000 Adjoint functor.Homological algeb

[復制鏈接]
樓主: HARDY
21#
發(fā)表于 2025-3-25 04:53:06 | 只看該作者
22#
發(fā)表于 2025-3-25 07:59:22 | 只看該作者
Martin Goodman MD,David A. Geller MDIn what follows, .. We shall use the following notation, with . (or .) being a ring:
23#
發(fā)表于 2025-3-25 14:57:53 | 只看該作者
24#
發(fā)表于 2025-3-25 16:16:53 | 只看該作者
25#
發(fā)表于 2025-3-25 22:50:34 | 只看該作者
Michele Valiante,Paola GrammaticoA close look at much of the earlier material, especially in the last chapter, reveals the strong connection between projectives and injectives. The idea is this: Formulate your result purely in terms of arrows (morphisms), then reverse them. That is, work in the opposite category. Not everything can be done this way, but a surprising amount can.
26#
發(fā)表于 2025-3-26 03:01:41 | 只看該作者
Pathology of Hepatocellular CarcinomaThis section uses material from Chapters 1 and 2.
27#
發(fā)表于 2025-3-26 07:37:39 | 只看該作者
Categories,Homological algebra addresses questions that appear naturally in category theory, so category theory is a good starting point. Most of what follows is standard, but there are a few slippery points.
28#
發(fā)表于 2025-3-26 10:39:34 | 只看該作者
29#
發(fā)表于 2025-3-26 13:53:22 | 只看該作者
30#
發(fā)表于 2025-3-26 16:50:23 | 只看該作者
Derived Functors,The purpose of this chapter and the next is to generalize the earlier constructions of Ext and Tor. In this chapter, functors beyond Horn and ? will be applied to projective (and injective) resolutions in .. In the next chapter, these constructions will be carried out in more general categories.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
阳泉市| 漯河市| 泗阳县| 磐安县| 青铜峡市| 阳西县| 东山县| 从化市| 侯马市| 环江| 太湖县| 镇安县| 秦安县| 微山县| 隆昌县| 互助| 汤原县| 恩平市| 新营市| 肇州县| 哈密市| 温泉县| 长岭县| 庆云县| 鄱阳县| 沁阳市| 新龙县| 焉耆| 威远县| 临澧县| 咸丰县| 鄢陵县| 徐闻县| 邵阳县| 托克托县| 杭锦后旗| 汾西县| 盐津县| 辰溪县| 江陵县| 宜春市|