找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic ergodic theory; M. G. Nadkarni Book 2013Latest edition Hindustan Book Agency (India) 2013

[復制鏈接]
樓主: abandon
31#
發(fā)表于 2025-3-26 23:11:03 | 只看該作者
Additional Topics,Liouville’s theorem has its origin in classical mechanics. In its simplified version it gives a necessary and sufficient condition for a flow of homeomor-phisms on an open subset in ?. to be volume preserving. Following K. R. Parthasarathy [8] we give this version first, followed by a discussion of its version in classical mechanics.
32#
發(fā)表于 2025-3-27 03:41:13 | 只看該作者
33#
發(fā)表于 2025-3-27 07:29:07 | 只看該作者
Hindustan Book Agency (India) 2013
34#
發(fā)表于 2025-3-27 11:57:49 | 只看該作者
35#
發(fā)表于 2025-3-27 13:48:43 | 只看該作者
36#
發(fā)表于 2025-3-27 18:46:41 | 只看該作者
,H. Dye’s Theorem, admit Borel cross-sections. We will therefore assume in the rest of this chapter that . and . are free and their orbit spaces do not admit Borel cross-sections. The first important result on orbit equivalence was obtained by H. Dye [2] and the main aim of this chapter is to prove his theorem.
37#
發(fā)表于 2025-3-28 01:25:08 | 只看該作者
38#
發(fā)表于 2025-3-28 03:17:06 | 只看該作者
39#
發(fā)表于 2025-3-28 09:28:15 | 只看該作者
Bernoulli Shift and Related Concepts,hift and the related concept of .-automorphism at an elementary level. Bernoulli shifts provide us with examples of mixing measure preserving automorphisms. The discussion here follows closely the exposition in Patrick Billingsley [1].
40#
發(fā)表于 2025-3-28 11:18:29 | 只看該作者
Discrete Spectrum Theorem,ivalent. Let us say that . and . are spectrally isomorphic if . and . are unitarily equivalent. If . and . are spectrally isomorphic and . is ergodic then . is ergodic, because . is ergodic if and only if 1 is a simple eigenvalue of . hence also of ., which in turn implies the ergodicity of .. Simil
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-10 06:10
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
界首市| 吴忠市| 南城县| 五大连池市| 合山市| 理塘县| 平谷区| 阿鲁科尔沁旗| 衡水市| 岑巩县| 河源市| 博罗县| 中阳县| 定安县| 容城县| 三亚市| 绥德县| 山东省| 双牌县| 汽车| 射阳县| 赤峰市| 元阳县| 阜阳市| 九龙县| 彭阳县| 柳林县| 三河市| 武安市| 庆安县| 海南省| 冕宁县| 凤山市| 喀喇沁旗| 东兴市| 堆龙德庆县| 定安县| 醴陵市| 松阳县| 繁昌县| 偏关县|