找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic ergodic theory; M. G. Nadkarni Book 2013Latest edition Hindustan Book Agency (India) 2013

[復(fù)制鏈接]
樓主: abandon
21#
發(fā)表于 2025-3-25 04:59:28 | 只看該作者
,Name / Herkunft / Lebensumst?nde / Bildung,We have seen that a measure preserving automorphism . on a probability space (., ., .) is ergodic if and only if for all ., . ∈ .,.. Two properties stronger than ergodieity discovered by Koopman and von Neumann [2] will now be discussed.
22#
發(fā)表于 2025-3-25 09:15:38 | 只看該作者
23#
發(fā)表于 2025-3-25 14:58:03 | 只看該作者
Henry E. Kyburg, Jr. & Isaac LeviLet (., .) be a standard Borel space. A group ., . ∈ ?, of Borel automorphisms on (., .) is called a jointly measurable flow, or simply a flow, if
24#
發(fā)表于 2025-3-25 17:37:03 | 只看該作者
https://doi.org/10.1007/978-94-009-7718-1Liouville’s theorem has its origin in classical mechanics. In its simplified version it gives a necessary and sufficient condition for a flow of homeomor-phisms on an open subset in ?. to be volume preserving. Following K. R. Parthasarathy [8] we give this version first, followed by a discussion of its version in classical mechanics.
25#
發(fā)表于 2025-3-25 22:47:35 | 只看該作者
,The Poincaré Recurrence Lemma,Let . be a non-empty set. A .-algebra . on . is a non-empty collection of subsets of . which is closed under countable unions and complements. A set together with a .-algebra . is called a Borel space or a Borel structure (., .).
26#
發(fā)表于 2025-3-26 00:12:33 | 只看該作者
27#
發(fā)表于 2025-3-26 04:42:52 | 只看該作者
Ergodicity,A measure preserving Borel automorphism . on a probability space (., ., .) is said to be ergodic if for every . ∈ . invariant under ., .(.) = 0 or .(. ? .) = 0.
28#
發(fā)表于 2025-3-26 11:17:35 | 只看該作者
Mixing Conditions and Their Characterisations,We have seen that a measure preserving automorphism . on a probability space (., ., .) is ergodic if and only if for all ., . ∈ .,.. Two properties stronger than ergodieity discovered by Koopman and von Neumann [2] will now be discussed.
29#
發(fā)表于 2025-3-26 14:49:31 | 只看該作者
30#
發(fā)表于 2025-3-26 16:51:53 | 只看該作者
Flows and Their Representations,Let (., .) be a standard Borel space. A group ., . ∈ ?, of Borel automorphisms on (., .) is called a jointly measurable flow, or simply a flow, if
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 13:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建昌县| 高陵县| 文山县| 抚宁县| 遵化市| 高平市| 博湖县| 仁布县| 马尔康县| 沐川县| 化州市| 冷水江市| 贵溪市| 神农架林区| 元江| 大田县| 平泉县| 沅陵县| 永和县| 四会市| 花莲县| 平罗县| 丰城市| 双桥区| 禄劝| 临泉县| 凭祥市| 金塔县| 呼伦贝尔市| 根河市| 连江县| 南江县| 邮箱| 金坛市| 烟台市| 柳州市| 江津市| 汉阴县| 黔东| 鹰潭市| 彭泽县|