找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Algebraic Geometry 2; Schemes and Complex Igor R. Shafarevich Textbook 19942nd edition Springer-Verlag Berlin Heidelberg 1994 Algebr

[復(fù)制鏈接]
樓主: 傳家寶
11#
發(fā)表于 2025-3-23 11:35:09 | 只看該作者
Montaignes Begriff Der Gesundheit,d invariant point of view. On the one hand, this leads to new ideas and methods that turn out to be exceptionally fertile even for the study of the quasiprojective varieties we have worked with up to now. On the other, we arrive in this way at a generalisation of this notion that vastly extends the
12#
發(fā)表于 2025-3-23 17:16:20 | 只看該作者
Pet?r Beron und Seine Fischfibeln Chap. II, 2.3, this was proved for quasiprojective varieties, at the time the only varieties known to us. But the same arguments are valid also for arbitrary varieties. We give here a general definition; the topology of . that comes from its structure of a scheme is called its ..
13#
發(fā)表于 2025-3-23 21:24:38 | 只看該作者
14#
發(fā)表于 2025-3-23 23:25:29 | 只看該作者
15#
發(fā)表于 2025-3-24 04:50:36 | 只看該作者
16#
發(fā)表于 2025-3-24 07:26:22 | 只看該作者
Pet?r Beron und Seine Fischfibeln Chap. II, 2.3, this was proved for quasiprojective varieties, at the time the only varieties known to us. But the same arguments are valid also for arbitrary varieties. We give here a general definition; the topology of . that comes from its structure of a scheme is called its ..
17#
發(fā)表于 2025-3-24 10:55:09 | 只看該作者
18#
發(fā)表于 2025-3-24 17:36:47 | 只看該作者
19#
發(fā)表于 2025-3-24 21:58:58 | 只看該作者
Universit?ts-Gesellschaft HeidelbergIn previous sections of this book we have used the notion of quotient space to construct many important examples of complex manifolds. We now show that the notion leads to a general method of studying complex manifolds.
20#
發(fā)表于 2025-3-25 01:01:50 | 只看該作者
VarietiesIn this chapter we consider the schemes most closely related to projective varieties; they will be called algebraic varieties. This is exactly what we arrive at on attempting to give an intrinsic definition of algebraic variety.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 01:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南丰县| 彭山县| 南宁市| 航空| 台江县| 玛多县| 宣城市| 民县| 香港| 嘉峪关市| 濮阳市| 当涂县| 嵊州市| 洛阳市| 乐业县| 南昌市| 宿迁市| 青铜峡市| 和政县| 阳新县| 石泉县| 宣威市| 桓台县| 岳池县| 清苑县| 鱼台县| 宁南县| 乌拉特后旗| 和田县| 孟连| 铜陵市| 临颍县| 融水| 林甸县| 新安县| 中方县| 留坝县| 长丰县| 遂宁市| 隆林| 防城港市|