找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Algebraic Geometry 1; Igor R. Shafarevich Textbook 19942nd edition Springer-Verlag Berlin Heidelberg 1994 Algebraic Geometry.Algebra

[復(fù)制鏈接]
樓主: calcification
11#
發(fā)表于 2025-3-23 13:23:08 | 只看該作者
12#
發(fā)表于 2025-3-23 14:16:12 | 只看該作者
Intersection Numbers,. However, they do not say anything about the number of solutions if this number is finite. The distinction is the same as that between the theorem that roots of a polynomial exist, and the theorem that the number of roots of a polynomial equals its degree. The latter result is only true if we count
13#
發(fā)表于 2025-3-23 20:45:03 | 只看該作者
came out just as the apparatus of algebraic geometry was reaching a stage that permitted a lucid and concise account of the foundations of the subject. The author was no longer forced into the painful choice between sacrificing rigour of exposition or overloading the clear geometrical picture with c
14#
發(fā)表于 2025-3-23 22:37:09 | 只看該作者
15#
發(fā)表于 2025-3-24 04:12:41 | 只看該作者
Divisors and Differential Forms,hat is, by the points at which it is 0 or is irregular. To distinguish the roots of g from those of ., we take their multiplicities with a minus sign. Thus the function ? is given by points .., …,.. with arbitrary integer multiplicities ..,… , ...
16#
發(fā)表于 2025-3-24 07:28:46 | 只看該作者
17#
發(fā)表于 2025-3-24 11:40:10 | 只看該作者
18#
發(fā)表于 2025-3-24 15:03:51 | 只看該作者
Textbook 19942nd editionThere is thus scope for a second edition. In preparing this, I have included some additional material, rather varied in nature, and have made some small cuts, but the general character of the book remains unchanged.
19#
發(fā)表于 2025-3-24 19:40:07 | 只看該作者
20#
發(fā)表于 2025-3-25 02:12:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙岩市| 新竹县| 军事| 大足县| 保康县| 赣州市| 壶关县| 兴国县| 吴忠市| 平安县| 临漳县| 农安县| 新绛县| 泸西县| 昆山市| 福泉市| 泽州县| 舒兰市| 左权县| 响水县| 谢通门县| 万山特区| 安仁县| 遂宁市| 古交市| 宿迁市| 永福县| 洪雅县| 天长市| 聂拉木县| 荥阳市| 中卫市| 无极县| 永泰县| 长岭县| 大田县| 尉犁县| 津市市| 二连浩特市| 营口市| 会理县|