找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bandit problems; Sequential Allocatio Donald A. Berry,Bert Fristedt Book 1985 D. A. Berry and B. Fristedt 1985 Calculation.Counting.Mathema

[復制鏈接]
樓主: 解毒藥
21#
發(fā)表于 2025-3-25 06:52:34 | 只看該作者
22#
發(fā)表于 2025-3-25 10:44:33 | 只看該作者
23#
發(fā)表于 2025-3-25 12:48:55 | 只看該作者
24#
發(fā)表于 2025-3-25 16:02:48 | 只看該作者
25#
發(fā)表于 2025-3-25 21:50:05 | 只看該作者
The discount sequence,The particular discount sequence plays a critical role in any bandit or other decision problem. Various interpretations of discount sequences are discussed in this chapter. One purpose of the discussion is to aid a user in choosing an appropriate sequence; another is to motivate interest in the generality of discounting allowed in this monograph.
26#
發(fā)表于 2025-3-26 04:04:49 | 只看該作者
Introduction,Information as to the effectiveness of the treatments accrues as they are used. The overall objective is to treat as many patients as effectively as possible. This seemingly innocent but important problem is surprisingly difficult, even when the responses are dichotomous, either success or failure. It is an example of a two-armed bandit problem.
27#
發(fā)表于 2025-3-26 08:10:33 | 只看該作者
28#
發(fā)表于 2025-3-26 12:32:00 | 只看該作者
Two arms, one arm known,died in .., now abbreviated to ., the distribution of the random measure ... For arbitrary . we can, without loss, assume that arm 2 always produces the known observation . Since . is given by the pair (.), we now speak of the (., .; .)-bandit.
29#
發(fā)表于 2025-3-26 15:13:46 | 只看該作者
Two independent Bernoulli arms; uniform discounting,nce . has horizon n and is uniform: . . = ... = . . = 1 and . . = . . = ... = 0. Such uniform discounting has been considered extensively through examples in the first five chapters of this book, and in the literature generally. The objective implicit in uniform discounting is to maximize the expected sum of the first . observations.
30#
發(fā)表于 2025-3-26 17:42:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
乌兰察布市| 寻乌县| 曲靖市| 高平市| 全南县| 陈巴尔虎旗| 海南省| 金坛市| 连平县| 闵行区| 阜新| 舒城县| 涿鹿县| 瓮安县| 株洲县| 吉林市| 台北市| 垫江县| 沭阳县| 轮台县| 遂川县| 共和县| 理塘县| 桦甸市| 江永县| 民丰县| 沾化县| 蓝田县| 黑龙江省| 门源| 张家港市| 灵川县| 镇沅| 灵宝市| 乐业县| 荣成市| 乐清市| 全州县| 蛟河市| 象州县| 岳西县|