找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Banach Space Valued Neural Network; Ordinary and Fractio George A. Anastassiou Book 2023 The Editor(s) (if applicable) and The Author(s), u

[復(fù)制鏈接]
樓主: arouse
21#
發(fā)表于 2025-3-25 06:49:07 | 只看該作者
22#
發(fā)表于 2025-3-25 08:09:28 | 只看該作者
23#
發(fā)表于 2025-3-25 14:27:19 | 只看該作者
24#
發(fā)表于 2025-3-25 16:47:46 | 只看該作者
Die Kommunalwissenschaften und ihre Pflegethese operators to the unit operator, as we are studying the univariate case. We treat also analogously the multivariate case by using Fréchet derivatives. The functions under approximation are Banach space valued. It follows [.].
25#
發(fā)表于 2025-3-25 22:35:22 | 只看該作者
26#
發(fā)表于 2025-3-26 03:25:14 | 只看該作者
Quantitative Approximation by Kantorovich-Shilkret Quasi-interpolation Neural Network Operators Revhey are additionally uniformly continuous we derive pointwise and uniform convergences. We include also the related Complex approximation. Our activation functions are induced by the arctangent, algebraic, Gudermannian and generalized symmetrical sigmoid functions. It follows [.].
27#
發(fā)表于 2025-3-26 05:22:00 | 只看該作者
28#
發(fā)表于 2025-3-26 09:55:17 | 只看該作者
,Algebraic Function Induced Banach Space Valued Ordinary and?Fractional Neural Network Approximation or all the real line by quasi-interpolation Banach space valued neural network operators. These approximations are derived by establishing Jackson type inequalities involving the modulus of continuity of the engaged function or its Banach space valued high order derivative or fractional derivatives
29#
發(fā)表于 2025-3-26 13:55:03 | 只看該作者
Gudermannian Function Induced Banach Space Valued Ordinary and Fractional Neural Network Approximatval or all the real line by quasi-interpolation Banach space valued neural network operators. These approximations are derived by establishing Jackson type inequalities involving the modulus of continuity of the engaged function or its Banach space valued high order derivative or fractional derivati
30#
發(fā)表于 2025-3-26 18:39:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 20:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
荔波县| 河西区| 义马市| 张家港市| 阿坝| 张北县| 阿荣旗| 舒兰市| 夹江县| 阜南县| 双江| 始兴县| 泉州市| 呼和浩特市| 广宗县| 鄂托克前旗| 乐昌市| 静海县| 雷州市| 宁阳县| 房产| 当阳市| 客服| 盐源县| 汾西县| 叙永县| 营口市| 庄浪县| 长沙市| 马龙县| 哈巴河县| 定安县| 盐津县| 大埔区| 宽城| 双鸭山市| 那坡县| 昌都县| 沭阳县| 牙克石市| 孝昌县|