找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Banach Space Theory and its Applications; Proceedings of the F Albrecht Pietsch,Nicolae Popa,Ivan Singer Conference proceedings 1983 Spring

[復(fù)制鏈接]
樓主: Ford
11#
發(fā)表于 2025-3-23 12:00:42 | 只看該作者
12#
發(fā)表于 2025-3-23 15:17:17 | 只看該作者
978-3-540-12298-2Springer-Verlag Berlin Heidelberg 1983
13#
發(fā)表于 2025-3-23 19:06:25 | 只看該作者
14#
發(fā)表于 2025-3-24 01:29:07 | 只看該作者
https://doi.org/10.1007/978-3-7091-3768-0 characterization of separable conjugate Banach spaces by a similar summability condition. As a consequence, we obtain analogous characterizations of separable second conjugate Banach spaces and of quasi-reflexive spaces. Nonseparable conjugate Banach spaces possessing a smooth predual are also char
15#
發(fā)表于 2025-3-24 03:49:36 | 只看該作者
Handbuch der kommunalen Sozialpolitik,yεE we always have dist (y,P.(x))≥‖x?y‖-dist(x,G), we study the subspaces G with the property — which we call property (*) — that this inequality is an equality for each xεE with P.(x)≠φ and each gεG. This property generalizes the notion of semi L-summand studied by A.Lima. For a subspace G with pr
16#
發(fā)表于 2025-3-24 08:19:05 | 只看該作者
17#
發(fā)表于 2025-3-24 11:54:10 | 只看該作者
On summability in conjugate Banach spaces, characterization of separable conjugate Banach spaces by a similar summability condition. As a consequence, we obtain analogous characterizations of separable second conjugate Banach spaces and of quasi-reflexive spaces. Nonseparable conjugate Banach spaces possessing a smooth predual are also char
18#
發(fā)表于 2025-3-24 18:00:25 | 只看該作者
19#
發(fā)表于 2025-3-24 20:06:18 | 只看該作者
,On Etcheberry’s extended Milutin lemma,onal numbers. Etcheberry proved this by constructing a continuous surjection π: I→X that admits an averaging operator. Here, we provide an alternative technique for the construction of averaging operators that are even regular and also allow one to prove the first mentioned result.
20#
發(fā)表于 2025-3-25 00:49:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 05:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
利川市| 汝州市| 饶阳县| 博罗县| 图木舒克市| 巴中市| 宿州市| 莱州市| 怀安县| 通海县| 南康市| 阿拉善左旗| 正宁县| 阳谷县| 巴楚县| 都昌县| 陆良县| 扎赉特旗| 车致| 湘潭县| 库尔勒市| 措美县| 乌拉特后旗| 漾濞| 延津县| 罗平县| 墨竹工卡县| 中牟县| 三穗县| 黎城县| 颍上县| 栖霞市| 兴山县| 同心县| 甘洛县| 昭平县| 河曲县| 台安县| 交口县| 融水| 辽中县|