找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ball and Surface Arithmetics; Rolf-Peter Holzapfel Textbook 1998 Springer Fachmedien Wiesbaden 1998 algebra.algorithms.classification.fiel

[復制鏈接]
樓主: DUMMY
11#
發(fā)表于 2025-3-23 10:12:01 | 只看該作者
Orbital Surfaces,We work in the category of all compact complex normal algebraic surfaces with (at most) singularities of . type. A . on such a surface . is a formal sum ., where . = (., .; ...) is a (smooth) orbital curve on . and .. is an (arranged) abelian point on ., . = 1,...,., . = 1,..., .. The following axioms have to be satisfied:
12#
發(fā)表于 2025-3-23 13:51:12 | 只看該作者
13#
發(fā)表于 2025-3-23 21:33:04 | 只看該作者
Aspects of Mathematicshttp://image.papertrans.cn/b/image/180490.jpg
14#
發(fā)表于 2025-3-24 00:01:31 | 只看該作者
15#
發(fā)表于 2025-3-24 06:26:48 | 只看該作者
Handbuch der Laplace-Transformation 2. Its group of biholomorphic automorphisms is the projective group ?.((2,1), ?) = ?.((2,1), ?) acting on ? by fractional linear transformations. With obvious notations the corresponding (special) unitary group is defined by ..
16#
發(fā)表于 2025-3-24 08:32:20 | 只看該作者
Allgemeine Betrachtungen über Asymptotikalgebraic surface and has only cyclic singularities on .. Furthermore, we can assume that for any cyclic singularity . ∈ . there exists a smooth curve germ . on . through . such that (., .; ., .) is a reduced abelian point. A . along . is a pair (., .), . ≠ 0 a natural number. We say that the abelia
17#
發(fā)表于 2025-3-24 14:41:16 | 只看該作者
18#
發(fā)表于 2025-3-24 17:06:33 | 只看該作者
19#
發(fā)表于 2025-3-24 22:21:06 | 只看該作者
Partielle Differenzengleichungenxtend the notion of orbital surfaces. In the Galois theory orbital surfaces, orbital curves and points can be expressed by means of divisors and singularities. These are quite classical objects. The classical language does not work nicely in the general theory of surface coverings. Here we have to i
20#
發(fā)表于 2025-3-25 00:19:54 | 只看該作者
Ball Quotient Surfaces, 2. Its group of biholomorphic automorphisms is the projective group ?.((2,1), ?) = ?.((2,1), ?) acting on ? by fractional linear transformations. With obvious notations the corresponding (special) unitary group is defined by ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 01:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
登封市| 宁德市| 启东市| 兴文县| 潢川县| 英山县| 太湖县| 冀州市| 长丰县| 曲阜市| 商水县| 阿克陶县| 达日县| 雷波县| 扬州市| 胶南市| 洞头县| 新晃| 紫金县| 安泽县| 永昌县| 武义县| 阳西县| 红河县| 阿鲁科尔沁旗| 黄浦区| 彭州市| 旬邑县| 昌黎县| 阆中市| 称多县| 千阳县| 昌黎县| 昂仁县| 龙海市| 遵义县| 昌宁县| 东兰县| 琼海市| 始兴县| 永州市|