找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ball and Surface Arithmetics; Rolf-Peter Holzapfel Textbook 1998 Springer Fachmedien Wiesbaden 1998 algebra.algorithms.classification.fiel

[復制鏈接]
樓主: DUMMY
11#
發(fā)表于 2025-3-23 10:12:01 | 只看該作者
Orbital Surfaces,We work in the category of all compact complex normal algebraic surfaces with (at most) singularities of . type. A . on such a surface . is a formal sum ., where . = (., .; ...) is a (smooth) orbital curve on . and .. is an (arranged) abelian point on ., . = 1,...,., . = 1,..., .. The following axioms have to be satisfied:
12#
發(fā)表于 2025-3-23 13:51:12 | 只看該作者
13#
發(fā)表于 2025-3-23 21:33:04 | 只看該作者
Aspects of Mathematicshttp://image.papertrans.cn/b/image/180490.jpg
14#
發(fā)表于 2025-3-24 00:01:31 | 只看該作者
15#
發(fā)表于 2025-3-24 06:26:48 | 只看該作者
Handbuch der Laplace-Transformation 2. Its group of biholomorphic automorphisms is the projective group ?.((2,1), ?) = ?.((2,1), ?) acting on ? by fractional linear transformations. With obvious notations the corresponding (special) unitary group is defined by ..
16#
發(fā)表于 2025-3-24 08:32:20 | 只看該作者
Allgemeine Betrachtungen über Asymptotikalgebraic surface and has only cyclic singularities on .. Furthermore, we can assume that for any cyclic singularity . ∈ . there exists a smooth curve germ . on . through . such that (., .; ., .) is a reduced abelian point. A . along . is a pair (., .), . ≠ 0 a natural number. We say that the abelia
17#
發(fā)表于 2025-3-24 14:41:16 | 只看該作者
18#
發(fā)表于 2025-3-24 17:06:33 | 只看該作者
19#
發(fā)表于 2025-3-24 22:21:06 | 只看該作者
Partielle Differenzengleichungenxtend the notion of orbital surfaces. In the Galois theory orbital surfaces, orbital curves and points can be expressed by means of divisors and singularities. These are quite classical objects. The classical language does not work nicely in the general theory of surface coverings. Here we have to i
20#
發(fā)表于 2025-3-25 00:19:54 | 只看該作者
Ball Quotient Surfaces, 2. Its group of biholomorphic automorphisms is the projective group ?.((2,1), ?) = ?.((2,1), ?) acting on ? by fractional linear transformations. With obvious notations the corresponding (special) unitary group is defined by ..
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
安陆市| 淳安县| 天峨县| 秀山| 开江县| 小金县| 沁水县| 泰兴市| 横峰县| 阿拉善盟| 滨海县| 青田县| 徐州市| 天长市| 彰化县| 阳江市| 深泽县| 柳州市| 屯留县| 八宿县| 平罗县| 铜山县| 册亨县| 南昌县| 德格县| 札达县| 政和县| 璧山县| 大方县| 伊宁市| 遂宁市| 尼玛县| 文安县| 聊城市| 石泉县| 门头沟区| 蓬溪县| 上虞市| 六安市| 雅江县| 万州区|