找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: BMS Particles in Three Dimensions; Blagoje Oblak Book 2017 Springer International Publishing AG 2017 BMS Symmetry.BMS Group.Three-dimensio

[復(fù)制鏈接]
查看: 53627|回復(fù): 52
樓主
發(fā)表于 2025-3-21 19:50:21 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱BMS Particles in Three Dimensions
影響因子2023Blagoje Oblak
視頻videohttp://file.papertrans.cn/181/180129/180129.mp4
發(fā)行地址Nominated as an outstanding PhD thesis by the Brussels Universities, Belgium and University of Cambridge, UK.Offers a self-contained and pedagogical presentation with numerous schematic drawings illus
學(xué)科分類Springer Theses
圖書封面Titlebook: BMS Particles in Three Dimensions;  Blagoje Oblak Book 2017 Springer International Publishing AG 2017 BMS Symmetry.BMS Group.Three-dimensio
影響因子This thesis presents the state of the art in the study of Bondi-Metzner-Sachs (BMS) symmetry and its applications in the simplified setting of three dimensions. It focuses on presenting all the background material in a pedagogical and self-contained manner to enable readers to fully appreciate the original results that have been obtained while learning a number of fundamental concepts in the field along the way. This makes it a highly rewarding read and a perfect starting point for anybody with a serious interest in the four-dimensional problem.
Pindex Book 2017
The information of publication is updating

書目名稱BMS Particles in Three Dimensions影響因子(影響力)




書目名稱BMS Particles in Three Dimensions影響因子(影響力)學(xué)科排名




書目名稱BMS Particles in Three Dimensions網(wǎng)絡(luò)公開度




書目名稱BMS Particles in Three Dimensions網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱BMS Particles in Three Dimensions被引頻次




書目名稱BMS Particles in Three Dimensions被引頻次學(xué)科排名




書目名稱BMS Particles in Three Dimensions年度引用




書目名稱BMS Particles in Three Dimensions年度引用學(xué)科排名




書目名稱BMS Particles in Three Dimensions讀者反饋




書目名稱BMS Particles in Three Dimensions讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:56:55 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:44:53 | 只看該作者
地板
發(fā)表于 2025-3-22 06:01:55 | 只看該作者
5#
發(fā)表于 2025-3-22 10:46:52 | 只看該作者
6#
發(fā)表于 2025-3-22 14:12:02 | 只看該作者
NDE 4.0: Image and Sound Recognitionthe opposite phenomenon: starting from a . of a group ., we will obtain a representation by . the orbit. This construction will further explain why orbits of momenta classify representations of semi-direct products. In addition it will turn out to be a tool for understanding gravity in parts II and III.
7#
發(fā)表于 2025-3-22 18:48:45 | 只看該作者
Springer Series in Optical Sciencesly these tools to the BMS. group in three dimensions. Accordingly, in this chapter and the two next ones we address a necessary prerequisite for these considerations by studying the central extension of the group of diffeomorphisms of the circle, i.e. the Virasoro group.
8#
發(fā)表于 2025-3-23 00:41:52 | 只看該作者
Handbook of Nonlinear Optical Crystalsal for our purposes because they will turn out to coincide with the supermomentum orbits that classify BMS. particles. As we shall see, despite being infinite-dimensional, these orbits behave very much like the finite-dimensional coadjoint orbits of ..
9#
發(fā)表于 2025-3-23 05:24:30 | 只看該作者
10#
發(fā)表于 2025-3-23 08:20:57 | 只看該作者
Semi-direct Productsunitary representations, which are induced from representations of their translation subgroup combined with a so-called .. We interpret these representations as . propagating in space-time and having definite transformation properties under the corresponding symmetry group. This picture will be instrumental in our study of the BMS. group.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 02:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐至县| 白河县| 富裕县| 庐江县| 阿拉尔市| 龙南县| 清远市| 菏泽市| 浙江省| 金山区| 青海省| 昭平县| 宜阳县| 明水县| 威信县| 沙湾县| 郓城县| 巫溪县| 鄂托克前旗| 泰安市| 合水县| 湖南省| 琼海市| 万安县| 疏附县| 新沂市| 新兴县| 讷河市| 瓮安县| 商都县| 老河口市| 繁峙县| 玉山县| 乃东县| 游戏| 桐城市| 建阳市| 老河口市| 六枝特区| 顺义区| 涿州市|