找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: BERRU Predictive Modeling; Best Estimate Result Dan Gabriel Cacuci Book 2019 Springer-Verlag GmbH Germany, part of Springer Nature 2019 Cal

[復(fù)制鏈接]
查看: 45159|回復(fù): 37
樓主
發(fā)表于 2025-3-21 18:50:44 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱BERRU Predictive Modeling
期刊簡稱Best Estimate Result
影響因子2023Dan Gabriel Cacuci
視頻videohttp://file.papertrans.cn/181/180083/180083.mp4
發(fā)行地址The first-ever book on the experimental calibration of best estimate numerical simulation models.Demonstrates the model’s implementation using various examples, e.g. from chemistry, geophysics, space
圖書封面Titlebook: BERRU Predictive Modeling; Best Estimate Result Dan Gabriel Cacuci Book 2019 Springer-Verlag GmbH Germany, part of Springer Nature 2019 Cal
影響因子.This book addresses the experimental calibration of best-estimate numerical simulation models. The results of measurements and computations are never exact. Therefore, knowing only the nominal values of experimentally measured or computed quantities is insufficient for applications, particularly since the respective experimental and computed nominal values seldom coincide. In the author’s view, the objective of predictive modeling is to extract “best estimate” values for model parameters and predicted results, together with “best estimate” uncertainties for these parameters and results. To achieve this goal, predictive modeling combines imprecisely known experimental and computational data, which calls for reasoning on the basis of incomplete, error-rich, and occasionally discrepant information. .The customary methods used for data assimilation combine experimental and computational information by minimizing an a priori, user-chosen, “cost functional” (usually a quadratic functional that represents the weighted errors between measured and computed responses). In contrast to these user-influenced methods, the BERRU (Best Estimate Results with Reduced Uncertainties) Predictive Model
Pindex Book 2019
The information of publication is updating

書目名稱BERRU Predictive Modeling影響因子(影響力)




書目名稱BERRU Predictive Modeling影響因子(影響力)學(xué)科排名




書目名稱BERRU Predictive Modeling網(wǎng)絡(luò)公開度




書目名稱BERRU Predictive Modeling網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱BERRU Predictive Modeling被引頻次




書目名稱BERRU Predictive Modeling被引頻次學(xué)科排名




書目名稱BERRU Predictive Modeling年度引用




書目名稱BERRU Predictive Modeling年度引用學(xué)科排名




書目名稱BERRU Predictive Modeling讀者反饋




書目名稱BERRU Predictive Modeling讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:11:22 | 只看該作者
Book 2019ormation by minimizing an a priori, user-chosen, “cost functional” (usually a quadratic functional that represents the weighted errors between measured and computed responses). In contrast to these user-influenced methods, the BERRU (Best Estimate Results with Reduced Uncertainties) Predictive Model
板凳
發(fā)表于 2025-3-22 04:23:21 | 只看該作者
地板
發(fā)表于 2025-3-22 07:15:19 | 只看該作者
5#
發(fā)表于 2025-3-22 12:17:11 | 只看該作者
Berru-Cms Predictive Modeling Of Coupled Multiphysics Systems,optimally predicted values for the multi-physics models parameters and responses along with corresponding reduced uncertainties. Noteworthy, the predictive modeling methodology for the coupled systems is constructed such that the systems can be considered sequentially rather than simultaneously, whi
6#
發(fā)表于 2025-3-22 16:10:51 | 只看該作者
7#
發(fā)表于 2025-3-22 20:31:40 | 只看該作者
8#
發(fā)表于 2025-3-22 22:41:26 | 只看該作者
9#
發(fā)表于 2025-3-23 03:41:36 | 只看該作者
https://doi.org/10.1007/978-3-642-24458-2ctly and efficiently using the adjoint sensitivity analysis method for nonlinear systems (ASAM). When using the traditional “ASAM for functional-type responses,” 307 adjoint computations are needed for computing . the sensitivities of the time-dependent nitric concentration response in compartment #
10#
發(fā)表于 2025-3-23 06:06:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 21:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沙坪坝区| 德清县| 郑州市| 凉山| 淄博市| 嘉鱼县| 盖州市| 景洪市| 桐庐县| 个旧市| 桑日县| 宜章县| 顺昌县| 广德县| 高淳县| 湘阴县| 洪泽县| 新巴尔虎右旗| 班戈县| 顺昌县| 安国市| 新疆| 新营市| 江达县| 怀来县| 玉溪市| 界首市| 昌宁县| 固原市| 海口市| 青海省| 信丰县| 奉节县| 新竹县| 竹山县| 湘西| 永定县| 英德市| 连山| 栾川县| 吴桥县|