找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: BEM-based Finite Element Approaches on Polytopal Meshes; Steffen Wei?er Book 2019 Springer Nature Switzerland AG 2019 BEM-based FEM.Trefft

[復(fù)制鏈接]
樓主: culinary
11#
發(fā)表于 2025-3-23 12:54:57 | 只看該作者
https://doi.org/10.1007/978-3-319-29454-4do not satisfy the classical regularity properties used in the approximation theory and thus they have to be treated in a special way. However, such meshes allow the accurate and efficient approximation of functions featuring anisotropic behaviours near boundary or interior layers.
12#
發(fā)表于 2025-3-23 16:59:49 | 只看該作者
13#
發(fā)表于 2025-3-23 21:33:20 | 只看該作者
Finite Element Method on Polytopal Meshes,ver these general meshes. The formulation of the BEM-based FEM is obtained by means of a Galerkin formulation and its convergence and approximation properties are analysed with the help of introduced interpolation operators. Numerical experiments confirm the theoretical findings.
14#
發(fā)表于 2025-3-24 01:56:03 | 只看該作者
15#
發(fā)表于 2025-3-24 03:21:14 | 只看該作者
16#
發(fā)表于 2025-3-24 09:23:42 | 只看該作者
1439-7358 ds designed for the treatment of boundary value problems on .This book introduces readers to one of the first methods developed for the numerical treatment of boundary value problems on polygonal and polyhedral meshes, which it subsequently analyzes and applies in various scenarios. The BEM-based fi
17#
發(fā)表于 2025-3-24 14:27:33 | 只看該作者
18#
發(fā)表于 2025-3-24 18:20:53 | 只看該作者
19#
發(fā)表于 2025-3-24 20:34:19 | 只看該作者
Developments of Mixed and Problem-Adapted BEM-Based FEM,s lies on two topics: The use of the method within mixed finite element formulations and the generalization of the construction of basis functions to polyhedral elements with polygonal faces in 3D with an application to convection-dominated problems.
20#
發(fā)表于 2025-3-25 01:54:01 | 只看該作者
Steffen Wei?erState-of-the-art introduction, mathematical analysis and applications of the BEM-based FEM combined in one monograph..One of the first methods designed for the treatment of boundary value problems on
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 16:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江孜县| 乌兰察布市| 高陵县| 松滋市| 屏东县| 铜陵市| 奉化市| 稷山县| 观塘区| 科尔| 麻江县| 宜宾市| 临桂县| 万安县| 宿松县| 玉溪市| 合江县| 白玉县| 五指山市| 呼图壁县| 镇赉县| 黄平县| 平顺县| 阳新县| 墨玉县| 兖州市| 合阳县| 邹城市| 美姑县| 神木县| 屯留县| 贵溪市| 岳池县| 石景山区| 光山县| 中江县| 六盘水市| 页游| 屏边| 雷波县| 塘沽区|