找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: B-Series; Algebraic Analysis o John C. Butcher Book 2021 Springer Nature Switzerland AG 2021 Butcher series.Butcher group.numerical methods

[復(fù)制鏈接]
樓主: 恐怖
31#
發(fā)表于 2025-3-26 23:23:19 | 只看該作者
32#
發(fā)表于 2025-3-27 03:46:42 | 只看該作者
Trees and forests,r free, trees. It is shown how to build up trees from the tree with a single vertex, using the beta-product and the B+ operation, together with a prefix (Polish) operator. Formal linear combinations of forests are introduced as the “forest space” and, as an application, the enumeration of trees is s
33#
發(fā)表于 2025-3-27 07:08:39 | 只看該作者
B-series and Algebraic Analysis,ings. One mapping would be the exact flow through a specified time step and the other would be a numerical scheme, such as a Runge–Kutta method. The B-series approach to questions like this is to write the Taylor expansions of the two mappings in a special way, in terms of “elementary differentials”
34#
發(fā)表于 2025-3-27 11:40:15 | 只看該作者
35#
發(fā)表于 2025-3-27 14:55:12 | 只看該作者
,B-series and Runge–Kutta methods,ting there is no interest in numerical methods which are applicable only to scalar problems and, above order 4, an analysis based on B-series is more appropriate. Even for order 5 there exist scalar methods with reduced order when applied to non-scalar problems. Explicit methods to order 5 are deriv
36#
發(fā)表于 2025-3-27 20:24:31 | 只看該作者
37#
發(fā)表于 2025-3-27 23:45:40 | 只看該作者
38#
發(fā)表于 2025-3-28 03:33:39 | 只看該作者
10樓
39#
發(fā)表于 2025-3-28 07:30:58 | 只看該作者
10樓
40#
發(fā)表于 2025-3-28 13:16:29 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 15:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
利川市| 娱乐| 正蓝旗| 茶陵县| 准格尔旗| 石城县| 太原市| 盘山县| 绥芬河市| 云梦县| 长岭县| 屏南县| 道孚县| 绥滨县| 祁门县| 察哈| 随州市| 嘉祥县| 崇仁县| 太仆寺旗| 皋兰县| 安泽县| 鲁甸县| 丰原市| 合川市| 通河县| 青冈县| 台前县| 定结县| 敖汉旗| 军事| 海门市| 江口县| 通州区| 容城县| 定南县| 高雄县| 德保县| 江城| 新津县| 化隆|