找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Axiomatic Fuzzy Set Theory and Its Applications; Xiaodong Liu,Witold Pedrycz Book 2009 Springer-Verlag Berlin Heidelberg 2009 AFS Theory.A

[復制鏈接]
樓主: 拐杖
41#
發(fā)表于 2025-3-28 18:18:29 | 只看該作者
AFS Formal Concept and AFS Fuzzy Formal Concept Analysisrequired to define the fuzzy relation or the fuzzy set on .×. to describe the uncertainty dependencies between the objects in . and the attributes in .. Another advantage comes with the fact that is that AFSFCA is more expedient and practical to be directly applied to real world applications.
42#
發(fā)表于 2025-3-28 22:11:10 | 只看該作者
AFS Logic, AFS Structure and Coherence Membership Functions a practical and effective framework supporting the development of membership functions of fuzzy concepts based on semantics and statistics completed with regard to fuzzy data. We show that the investigations concur with the main results of the Singpurwalla’s theory [44].
43#
發(fā)表于 2025-3-29 01:29:05 | 只看該作者
44#
發(fā)表于 2025-3-29 06:52:12 | 只看該作者
45#
發(fā)表于 2025-3-29 10:25:57 | 只看該作者
46#
發(fā)表于 2025-3-29 13:10:22 | 只看該作者
https://doi.org/10.1007/978-3-031-34366-7 a practical and effective framework supporting the development of membership functions of fuzzy concepts based on semantics and statistics completed with regard to fuzzy data. We show that the investigations concur with the main results of the Singpurwalla’s theory [44].
47#
發(fā)表于 2025-3-29 16:00:53 | 只看該作者
Claus Dierksmeier,Oliver Laasch variables such as numeric, Boolean, linguistic rating scale, sub-preference relations, and even descriptors associated with human intuition. Finally, some illustrative examples show that the proposed differential degrees are very effective in pattern recognition problems whose data sets do not form
48#
發(fā)表于 2025-3-29 22:26:01 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-17 10:52
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
东莞市| 湖口县| 托里县| 甘肃省| 海丰县| 花莲市| 铜陵市| 哈尔滨市| 紫金县| 林口县| 会昌县| 方山县| 静乐县| 陇南市| 吉首市| 安阳县| 淳安县| 灵武市| 吉首市| 彰化县| 平远县| 镇沅| 梁山县| 嵊泗县| 乐昌市| 南京市| 台中市| 汕尾市| 武邑县| 广州市| 剑川县| 沅江市| 扬中市| 南平市| 邻水| 商都县| 马山县| 临沧市| 彝良县| 宿迁市| 怀远县|