找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Stochastics; An Introduction with Norbert Henze Textbook 20241st edition The Editor(s) (if applicable) and The Author(s), under

[復(fù)制鏈接]
樓主: 搭話
31#
發(fā)表于 2025-3-26 21:14:50 | 只看該作者
32#
發(fā)表于 2025-3-27 01:06:58 | 只看該作者
A Central Limit Theorem for Stationary ,-Dependent Sequences,nce . of random variables means that, for each . and ., the distribution of the random vector . does not depend on . and thus is invariant to time shifts. In particular, all the . have the same distribution. Moreover, we assume that, for some non-negative integer ., this sequence is .-dependent, whi
33#
發(fā)表于 2025-3-27 05:30:58 | 只看該作者
The Multivariate Normal Distribution,variate normal distribution. A .-dimensional random vector . is said to have a .-variate normal distribution if each linear combination of its components has a (possibly degenerate) univariate normal distribution. This definition immediately entails that any collection of components of . has a (lowe
34#
發(fā)表于 2025-3-27 09:34:52 | 只看該作者
35#
發(fā)表于 2025-3-27 14:37:50 | 只看該作者
36#
發(fā)表于 2025-3-27 17:45:56 | 只看該作者
37#
發(fā)表于 2025-3-28 00:24:45 | 只看該作者
38#
發(fā)表于 2025-3-28 04:33:10 | 只看該作者
Maximum Likelihood Estimation,od of maximum likelihood (ML). This method, which has a long history, is applicable if the random variables on which the estimation is based have a density with respect to some dominating measure. The basic idea of ML estimation is to regard the parameter value that maximizes the joint density as a
39#
發(fā)表于 2025-3-28 06:56:36 | 只看該作者
Asymptotic (Relative) Efficiency of Estimators,formation inequality of Fréchet-Cramér-Rao that, under certain regularity conditions, provides a lower bound for the variance of an estimator. After pointing out the bias-variance-tradeoff in connection with minimizing the mean squared estimation error, a proof of the multivariate information inequa
40#
發(fā)表于 2025-3-28 13:39:50 | 只看該作者
Likelihood Ratio Tests,tio tests. As with the method of maximum likelihood, these tests presuppose densities with respect to some sigma-finite dominating measure. The chapter starts with compiling basic notions, such as .. These concepts are illustrated with the one-sided binomial test. Then, the Neyman-Person likelihood
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 10:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
信阳市| 新民市| 大悟县| 旅游| 巴林右旗| 高淳县| 锡林郭勒盟| 兖州市| 新乡县| 赤水市| 湄潭县| 汝州市| 曲麻莱县| 五指山市| 汶上县| 南投市| 临城县| 巴南区| 共和县| 内乡县| 吴桥县| 分宜县| 东山县| 屏边| 淮南市| 长沙市| 永福县| 西盟| 彭山县| 巴里| 鄂尔多斯市| 南宫市| 抚远县| 武威市| 怀集县| 南华县| 分宜县| 钦州市| 皋兰县| 金川县| 荆门市|