找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arbitrary Reference in Logic and Mathematics; Massimiliano Carrara,Enrico Martino Book 2024 Springer Nature Switzerland AG 2024 Arbitrary

[復(fù)制鏈接]
樓主: Encounter
11#
發(fā)表于 2025-3-23 13:34:24 | 只看該作者
eference. We argue that . is essential for both formal and informal logical deduction, as well as for the semantics of quantifiers. We propose to understand . as direct reference via an ideal act of choice, setting the stage for further developments in later chapters.
12#
發(fā)表于 2025-3-23 16:43:26 | 只看該作者
13#
發(fā)表于 2025-3-23 19:18:41 | 只看該作者
14#
發(fā)表于 2025-3-24 00:20:48 | 只看該作者
15#
發(fā)表于 2025-3-24 06:11:20 | 只看該作者
16#
發(fā)表于 2025-3-24 08:38:01 | 只看該作者
ng mathematician relates to the various possible interpretations in model theory. To this purpose we introduce some .. Additionally, we aim to clarify how one can deduce logical consequences of the axioms by reasoning on a single interpretation, even when a theory has non-equivalent elementary model
17#
發(fā)表于 2025-3-24 13:05:34 | 只看該作者
ontological commitment; (b) understanding our semantics does not require any prior mathematical concepts; and (c) although . is not universally applicable, it still offers significant applicability, especially in mathematics. We conclude the chapter arguing that second-order logic, as interpreted t
18#
發(fā)表于 2025-3-24 18:34:09 | 只看該作者
19#
發(fā)表于 2025-3-24 21:47:04 | 只看該作者
a mereological foundation of set theory is achievable within first order logic. Furthermore, we show how a mereological codification of ordered pairs is achievable with a very restricted use of the notion of .. Finally, in the last section of this chapter we show that, adopting a relativistic notio
20#
發(fā)表于 2025-3-24 23:23:31 | 只看該作者
https://doi.org/10.1007/978-3-031-66452-6Arbitrary reference; Plural reference; Second order logic; Plural quantification; Logicality of second o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 17:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和顺县| 白水县| 四川省| 新蔡县| 乌海市| 黔南| 田林县| 庐江县| 曲松县| 阿坝县| 和平县| 开化县| 陵川县| 容城县| 彩票| 浪卡子县| 冕宁县| 横峰县| 新河县| 峨眉山市| 密山市| 阿拉尔市| 元阳县| 长阳| 赣榆县| 景泰县| 仪陇县| 聂荣县| 桐庐县| 资阳市| 汪清县| 吉首市| 哈密市| 丰县| 江门市| 班戈县| 水富县| 房山区| 明水县| 屯昌县| 新干县|