找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Cryptography and Network Security Workshops; ACNS 2024 Satellite Martin Andreoni Conference proceedings 2024 The Editor(s) (if app

[復(fù)制鏈接]
樓主: 生動(dòng)
31#
發(fā)表于 2025-3-26 22:52:50 | 只看該作者
32#
發(fā)表于 2025-3-27 02:56:43 | 只看該作者
Acki Nacki: A Probabilistic Proof-of-Stake Consensus Protocol with?Fast Finality and?Parallelisationpproach is separating the verification of execution by a consensus committee from the attestation of block propagation by network participants. Our consensus committee is randomly selected for each block and is not predetermined, while the Leader is deterministic.
33#
發(fā)表于 2025-3-27 05:50:56 | 只看該作者
Incorporating Cluster Analysis of?Feature Vectors for?Non-profiled Deep-learning-Based Side-Channel as MSB or HW. We propose a new deep-learning-based SCA in a non-profiled scenario to solve these problems. Our core idea is to conduct dimensionality reduction on the leakage waveform using DNN. The adversary conducts cluster analysis using the feature vectors extracted from power traces using DNN.
34#
發(fā)表于 2025-3-27 11:11:59 | 只看該作者
35#
發(fā)表于 2025-3-27 16:10:42 | 只看該作者
36#
發(fā)表于 2025-3-27 17:48:08 | 只看該作者
37#
發(fā)表于 2025-3-28 00:10:42 | 只看該作者
Harnessing the?Power of?General-Purpose LLMs in?Hardware Trojan Designic module abstractions of hardware designs. By doing so, we tackle the challenges posed by the context length limit of LLMs, that become prevalent during LLM-based analyses of large code bases. Next, we initiate an LLM analysis of the reduced code base, that includes only the register transfer level
38#
發(fā)表于 2025-3-28 05:33:37 | 只看該作者
Device Fingerprinting in?a?Smart Grid CPSgs) is modeled through the use of machine learning techniques. Under a malicious spoofing attack, the noise pattern deviates from the fingerprinted pattern and hence enabling the proposed detection scheme to identify these attacks. A novel ensemble learning method is used to identify the Intelligent
39#
發(fā)表于 2025-3-28 06:40:25 | 只看該作者
Evaluation of?Lightweight Machine Learning-Based NIDS Techniques for?Industrial IoTur implementations on the IoT-23 and TON_IoT datasets and compare the results in terms of classification performance, throughput and resource consumption. We show that tree-based models surpass the neural network-based models in classification performance and throughput but that hardware acceleratio
40#
發(fā)表于 2025-3-28 10:53:23 | 只看該作者
Measuring Cyber Resilience of?IoT-Enabled Critical National Infrastructuresd that the performance of the system under an attack is dependent on the recovery time; hence, the higher the systemic impact, the lower the resilience of the CNI and vice versa. Quantifying the resilience of CNI is crucial to determining the security control defenses required to reduce the impact o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 01:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
云林县| 西贡区| 康保县| 宝鸡市| 嘉峪关市| 杂多县| 平果县| 舒兰市| 宾阳县| 九江县| 颍上县| 莲花县| 万盛区| 南昌市| 平舆县| 清徐县| 高清| 郁南县| 额济纳旗| 麻江县| 北海市| 吴桥县| 博罗县| 滨海县| 长沙县| 滦南县| 祁阳县| 石柱| 灵寿县| 略阳县| 镇江市| 平果县| 江津市| 介休市| 西林县| 南岸区| 唐河县| 杭锦旗| 谷城县| 乐昌市| 新闻|