找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Partial Differential Equations; Thomas Alazard Textbook 2024 The Editor(s) (if applicable) and The Author(s), under exclusive

[復(fù)制鏈接]
樓主: CLOG
21#
發(fā)表于 2025-3-25 07:03:40 | 只看該作者
Harmonic FunctionsWe will now introduce the notion of the fundamental solution of the Laplacian on . and use it to express a representation formula of a function in terms of its gradient. This will serve us later to demonstrate Sobolev inequalities.
22#
發(fā)表于 2025-3-25 11:30:46 | 只看該作者
Symbolic CalculusIn this first section, we will see three distinct situations in which we can easily study the products (composition) and the adjoints of pseudo-differential operators.
23#
發(fā)表于 2025-3-25 11:56:23 | 只看該作者
24#
發(fā)表于 2025-3-25 18:30:12 | 只看該作者
25#
發(fā)表于 2025-3-25 23:59:16 | 只看該作者
26#
發(fā)表于 2025-3-26 00:33:48 | 只看該作者
27#
發(fā)表于 2025-3-26 05:33:11 | 只看該作者
Hilbertian Analysis, Duality and Convexitye and powerful theory: the study of Hilbert spaces. These are the spaces for which we have an analogue of Pythagoras’ theorem, so we can use the methods of Euclidean geometry in infinite-dimensional spaces. We will study the properties of orthogonality and convexity and see how they intervene in the study of the topological dual.
28#
發(fā)表于 2025-3-26 10:23:08 | 只看該作者
29#
發(fā)表于 2025-3-26 15:16:31 | 只看該作者
Schauder’s Theoremontinuity argument (whose simplest version is given by Exercise 1.7). This argument demonstrates the ability to simplify the proof of the existence of solutions for equations with variable coefficients to that of equations with constant coefficients.
30#
發(fā)表于 2025-3-26 17:50:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 20:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿克陶县| 会理县| 无棣县| 玉树县| 怀集县| 枣阳市| 云阳县| 苍溪县| 新蔡县| 泌阳县| 邯郸县| 报价| 青河县| 惠水县| 勃利县| 普格县| 利津县| 沙田区| 卢氏县| 怀集县| 阳城县| 九寨沟县| 桓台县| 开封市| 招远市| 富裕县| 藁城市| 东阿县| 马尔康县| 宁武县| 大余县| 江安县| 富宁县| 顺义区| 长宁区| 吉水县| 云梦县| 南澳县| 长阳| 都兰县| 五家渠市|