找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Soft Computing; 23rd Mexican Interna Lourdes Martínez-Villase?or,Gilberto Ochoa-Ruiz Conference proceedings 2025 The Editor(s)

[復制鏈接]
查看: 42685|回復: 55
樓主
發(fā)表于 2025-3-21 18:42:33 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Advances in Soft Computing
期刊簡稱23rd Mexican Interna
影響因子2023Lourdes Martínez-Villase?or,Gilberto Ochoa-Ruiz
視頻videohttp://file.papertrans.cn/168/167316/167316.mp4
學科分類Lecture Notes in Computer Science
圖書封面Titlebook: Advances in Soft Computing; 23rd Mexican Interna Lourdes Martínez-Villase?or,Gilberto Ochoa-Ruiz Conference proceedings 2025 The Editor(s)
影響因子.The two-volume set, LNAI 15246 and 15247, constitutes the proceedings of the 23rd Mexican International Conference on Artificial Intelligence, MICAI 2024, held in Tonantzintla, Mexico in October?21–25, 2024...The 37 full papers presented in these proceedings were carefully reviewed and selected from 141 submissions. The papers presented in these two volumes are organized in the following topical sections:..Part I -?Machine Learning; Computer Vision...Part II -?Intelligent Systems;?Bioinformatics and Medical Applications;?Natural Language Processing..
Pindex Conference proceedings 2025
The information of publication is updating

書目名稱Advances in Soft Computing影響因子(影響力)




書目名稱Advances in Soft Computing影響因子(影響力)學科排名




書目名稱Advances in Soft Computing網絡公開度




書目名稱Advances in Soft Computing網絡公開度學科排名




書目名稱Advances in Soft Computing被引頻次




書目名稱Advances in Soft Computing被引頻次學科排名




書目名稱Advances in Soft Computing年度引用




書目名稱Advances in Soft Computing年度引用學科排名




書目名稱Advances in Soft Computing讀者反饋




書目名稱Advances in Soft Computing讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:44:22 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:25:20 | 只看該作者
地板
發(fā)表于 2025-3-22 06:39:11 | 只看該作者
5#
發(fā)表于 2025-3-22 12:42:19 | 只看該作者
Exploring Classificational Cellular Automaton Hyper-heuristics for?Solving the?Knapsack Problement structure of Cellular Automata, we introduce a hyper-heuristic model that dynamically chooses heuristics to solve a famous NP-hard problem, the Knapsack Problem, where we test our approach. We implement and compare our approach against the heuristics and some popular classifiers such as . neares
6#
發(fā)表于 2025-3-22 16:27:39 | 只看該作者
Enhancing Reptile Search Algorithm Performance for?the?Knapsack Problem with?Integration of?Chaotic SA, Particle Swarm Optimization (PSO), and Grey Wolf Optimizer (GWO) using the S4 transfer function with four binarization strategies: standard, standard with chaotic maps, elitist, and elitist with chaotic maps. Experimental results show that standard binarization strategies, particularly RSA?with
7#
發(fā)表于 2025-3-22 20:25:51 | 只看該作者
Optimal Fuzzy-Genetic Self-tuning for Tracking Photovoltaic Peak Powerg fuzzy tuning system enhanced by a genetic algorithm (GA). The method encodes essential parameters—such as scaling factors, membership function parameters, and controller policies—into bit-strings, which are processed by the GA to find near-optimal solutions. A specific fitness function is used to
8#
發(fā)表于 2025-3-22 21:23:19 | 只看該作者
Novel Approaches to?the?Minimum Identifying Code Problem Using Enhanced Genetic Algorithmssearch (PB-LS) with a repair mechanism?into the Rank Genetic Algorithm (Rank GA), enhancing solution quality through localized adjustments. The second algorithm uses the Rank?GA with a penalty mechanism to guide the search for feasible solutions..The Rank GA’s ability to escape local optima and refi
9#
發(fā)表于 2025-3-23 04:00:53 | 只看該作者
10#
發(fā)表于 2025-3-23 05:58:48 | 只看該作者
Enhancing User Authentication Through EEG Based P300 Speller Responselectroencephalography (EEG)?is one of the most conventional methods for acquiring visual evoked potentials that is acquired from external stimuli, such as the?P300 speller elicits the P300 potential from the presentation?of characters and symbols. By employing machine learning classifiers and P300 p
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-19 18:39
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
武城县| 东丰县| 洪江市| 高阳县| 昂仁县| 达尔| 那曲县| 永福县| 台前县| 高平市| 高阳县| 平安县| 柘城县| 奉化市| 常宁市| 普陀区| 华阴市| 鄂州市| 吉林省| 定西市| 阳朔县| 满洲里市| 东港市| 鹤壁市| 芜湖市| 青海省| 高密市| 石阡县| 宿松县| 黔西县| 丰宁| 盐津县| 苏州市| 永顺县| 玉林市| 井研县| 阿拉善右旗| 山西省| 赤城县| 长汀县| 谷城县|