找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Intelligent Computing Technology and Applications; 20th International C De-Shuang Huang,Zhanjun Si,Wei Chen Conference proceedings

[復制鏈接]
樓主: graphic
11#
發(fā)表于 2025-3-23 12:02:27 | 只看該作者
,Regelungstechnische Verh?ltnisse,ng support for the prevention and treatment of echinococcosis. Echinococcosis, a zoonotic disease, is caused by the larval stage of tapeworms. It is of significant importance in terms of prevention, control strategies, and reducing the impact of the disease. In recent years, the study of RNA, genes,
12#
發(fā)表于 2025-3-23 14:53:02 | 只看該作者
,Wahrnehmen, Beschreiben und Erkl?ren,till difficult to accurately handle curling games, because the continuous state and action space of curling lead to the loss of position information during discretization. In this paper, we have designed a new curling agent based on curling rules. A Curling Location Extraction Policy-Value Network (
13#
發(fā)表于 2025-3-23 19:26:35 | 只看該作者
14#
發(fā)表于 2025-3-24 01:37:33 | 只看該作者
Logistiknetzwerkplanung und Transportketten,tly outputting denormalized results may lead to over-smooth predictions. These denormalized predictions suffer from the bias of amplitude scale and occasionally deviate far from actual ground truth. To alleviate this issue, we propose a novel time series forecasting model, Friformer, which compensat
15#
發(fā)表于 2025-3-24 05:02:37 | 只看該作者
,L?sungen zu den übungsaufgaben,g models based on deep learning tend to encounter issues during the feature extraction phase, such as disappearing features, substantial computational loads in feature fusion, and there exist disparities when fusing features of different levels, resulting in models with low robustness. Therefore, th
16#
發(fā)表于 2025-3-24 07:29:24 | 只看該作者
17#
發(fā)表于 2025-3-24 14:00:59 | 只看該作者
https://doi.org/10.1007/978-3-658-18593-0ments across various domains. However, most deep learning models often fail to consider the multi-resolution characteristics of time series data, which may lead to information loss issues. In this paper, we explore the utilization of information from raw time series data at various resolutions and p
18#
發(fā)表于 2025-3-24 18:50:40 | 只看該作者
https://doi.org/10.1007/978-3-658-10746-8se challenges, we propose a Spatio-Temporal Feature Fusion Model based on Transformer and a Global Feature Mining Module. The aim is to overcome the high resource consumption issue of the Transformer model when processing large-scale traffic data, as well as its potential shortcomings in capturing s
19#
發(fā)表于 2025-3-24 21:29:21 | 只看該作者
https://doi.org/10.1007/978-3-658-10746-8nificantly impact the recommendation performance of online courses. To address this problem, this paper proposes a feature decomposition multi-task online course recommendation model that integrates the multi-head self-attention mechanism and autoencoder (FDMA). This model adopts a feature decomposi
20#
發(fā)表于 2025-3-25 00:19:05 | 只看該作者
https://doi.org/10.1007/978-3-658-10746-8ssible time, this paper proposes an improved evacuation model. We analyze the crowd evacuation efficiency of different classroom layouts based on this model and propose a layout strategy. First, this paper improves the static field calculation method of the evacuation model and proposes a fast stati
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 18:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
资源县| 大邑县| 重庆市| 黑河市| 兴隆县| 崇阳县| 句容市| 那坡县| 米泉市| 蓝田县| 莲花县| 光泽县| 平谷区| 孝义市| 柞水县| 云霄县| 平谷区| 阿鲁科尔沁旗| 岗巴县| 金坛市| 科尔| 铅山县| 开阳县| 西盟| 武宣县| 阿勒泰市| 永修县| 肇庆市| 临夏县| 光泽县| 修武县| 桐梓县| 阿鲁科尔沁旗| 湖南省| 昭觉县| 米易县| 三原县| 江城| 嫩江县| 周宁县| 嘉善县|