找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Intelligent Computing Technology and Applications; 20th International C De-Shuang Huang,Wei Chen,Yijie Pan Conference proceedings

[復(fù)制鏈接]
樓主: fundoplication
11#
發(fā)表于 2025-3-23 11:29:00 | 只看該作者
A Multimodal Fake News Detection Model with Self-supervised Unimodal Label Generations and often ignore the semantic differences between single modalities, which limited the performance. To deal with the above problem, this paper proposes a multimodal fake news detection model (AFUG), which fully pays attention to the semantic correlation between each modal information by designing
12#
發(fā)表于 2025-3-23 13:58:38 | 只看該作者
13#
發(fā)表于 2025-3-23 20:31:08 | 只看該作者
14#
發(fā)表于 2025-3-23 23:32:13 | 只看該作者
Palmprint Recognition Using SC-LNMF Model in Gabor Domainmain of 2D-Gabor wavelet is mainly discussed in this paper. And to extract more texture features of palmprint images, a modified 2D-Gabor kernel function is also used here. It is known that the common LNMF method can successfully extract an image’s local feature, but it does not consider the sparse
15#
發(fā)表于 2025-3-24 04:06:56 | 只看該作者
SkinDiff: A Novel Data Synthesis Method Based on Latent Diffusion Model for Skin Lesion Segmentationng manual annotation. To address this issue, this paper proposes SkinDiff, a novel framework for training data expansion. Derived from the Latent Diffusion Model, we utilize two steps, the Generating Foreground and the Outpainting Background techniques, to synthesize high-fidelity labeled image samp
16#
發(fā)表于 2025-3-24 09:12:25 | 只看該作者
17#
發(fā)表于 2025-3-24 11:35:15 | 只看該作者
Context-Aware Relative Distinctive Feature Learning for Person Re-identificationtion tasks. Predominantly, current research concentrates on two aspects: fine-grained feature learning and hard example mining. However, these approaches present noticeable shortcomings. The method of fine-grained feature learning does not sufficiently account for the relativity of distinct features
18#
發(fā)表于 2025-3-24 15:12:35 | 只看該作者
19#
發(fā)表于 2025-3-24 20:02:27 | 只看該作者
20#
發(fā)表于 2025-3-25 01:40:14 | 只看該作者
Das Einzelelektron im Kristall,d crack segmentation network that insert a SER at each scale of the encoder and decoder. Finally, by comparing proposed model with six established segmentation algorithms on two public crack datasets, DeepCrack and MSCI, our model achieves higher segmentation accuracy with extremely low parameters and FLOPs.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 19:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
天津市| 清河县| 嵩明县| 建德市| 崇阳县| 砀山县| 丽水市| 普定县| 临颍县| 锦州市| 开阳县| 调兵山市| 财经| 鄄城县| 绍兴县| 科尔| 漯河市| 汝州市| 盈江县| 馆陶县| 罗源县| 攀枝花市| 桦南县| 明溪县| 七台河市| 章丘市| 会同县| 林周县| 永川市| 青神县| 射洪县| 小金县| 沾化县| 郯城县| 微山县| 枣阳市| 西华县| 阿尔山市| 颍上县| 集贤县| 洪洞县|