找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Intelligent Computing Technology and Applications; 20th International C De-Shuang Huang,Xiankun Zhang,Wei Chen Conference proceedi

[復(fù)制鏈接]
樓主: 嚴(yán)峻
21#
發(fā)表于 2025-3-25 06:04:37 | 只看該作者
,Einführung in die Gründungsfinanzierung, effectively reduce the energy consumption of the solution. The performance of SLHH is tested against three state-of-the-art algorithms in 20 benchmark instances. The experiment results demonstrate the effectiveness of SLHH in addressing the multifaceted challenges of EDFJSP.
22#
發(fā)表于 2025-3-25 08:04:36 | 只看該作者
https://doi.org/10.1007/978-3-662-07583-8ing information from dominant individuals to improve the distribution of the population. Thirty instances of different scales are utilized to evaluate the effectiveness of the RLEDA. The experimental results show that the RLEDA outperforms the comparison algorithms in solving energy-efficient DHFJSP.
23#
發(fā)表于 2025-3-25 14:49:42 | 只看該作者
Dynamic Search Hybrid Fireworks Algorithmegy enhances the information exchange between fireworks and improves the convergence performance of the algorithm. Tests were conducted on the CEC2017 benchmark suite, and the experimental results show that DHFWA significantly outperforms previous fireworks algorithms.
24#
發(fā)表于 2025-3-25 18:19:33 | 只看該作者
A Self-learning Hyper-Heuristic Algorithm for Energy-Efficient Distributed Flexible Job Shop Schedul effectively reduce the energy consumption of the solution. The performance of SLHH is tested against three state-of-the-art algorithms in 20 benchmark instances. The experiment results demonstrate the effectiveness of SLHH in addressing the multifaceted challenges of EDFJSP.
25#
發(fā)表于 2025-3-25 20:36:48 | 只看該作者
Reinforcement Learning-Based Estimation of Distribution Algorithm for Energy-Efficient Distributed Hing information from dominant individuals to improve the distribution of the population. Thirty instances of different scales are utilized to evaluate the effectiveness of the RLEDA. The experimental results show that the RLEDA outperforms the comparison algorithms in solving energy-efficient DHFJSP.
26#
發(fā)表于 2025-3-26 00:38:13 | 只看該作者
27#
發(fā)表于 2025-3-26 06:49:43 | 只看該作者
Die Rossby-Zahl-?hnlichkeitstheorie introduce a new fitness factor promoting knowledge transfer under particle guidance, preventing premature convergence to global optima. Results demonstrate that this method efficiently obtains high-precision feature subsets.
28#
發(fā)表于 2025-3-26 09:52:41 | 只看該作者
29#
發(fā)表于 2025-3-26 13:24:08 | 只看該作者
Guided Particle Adaptation PSO for Feature Selection on High-dimensional Classification introduce a new fitness factor promoting knowledge transfer under particle guidance, preventing premature convergence to global optima. Results demonstrate that this method efficiently obtains high-precision feature subsets.
30#
發(fā)表于 2025-3-26 20:13:58 | 只看該作者
A Double Deep Q Network Guided Online Learning Differential Evolution Algorithmomplexity and boost learning efficiency. Finally, an adaptive optimization operator is designed to select a suitable mutation strategy for the different search processes. The experimental results reveal that the proposed algorithm is superior to comparison algorithms on CEC 2017 real-parameter numerical optimization.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 04:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
民勤县| 香河县| 屏边| 云阳县| 富平县| 扶绥县| 静乐县| 新平| 韶关市| 沾化县| 静宁县| 临猗县| 夏津县| 和林格尔县| 中西区| 杨浦区| 乾安县| 龙川县| 山阳县| 土默特左旗| 松江区| 含山县| 电白县| 武汉市| 绵竹市| 安多县| 容城县| 淮北市| 方城县| 安义县| 莱西市| 诸城市| 济南市| 京山县| 汉源县| 巫溪县| 万载县| 鹤壁市| 鄂温| 佛坪县| 兴宁市|