找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Intelligent Computing Technology and Applications; 20th International C De-Shuang Huang,Yijie Pan,Jiayang Guo Conference proceedin

[復制鏈接]
樓主: Filament
41#
發(fā)表于 2025-3-28 15:23:10 | 只看該作者
42#
發(fā)表于 2025-3-28 20:33:57 | 只看該作者
Mechatronische Fahrwerkregelung,roposed modules, including Gaussian Noise Mix (GNM), Resblock, and Local Features Interpolation (LFI), use GSNet as the baseline. GNM is used for feature augmentation of backbone features during training to reduce the empirical risk of the model when dealing with novel samples. Resblock is designed
43#
發(fā)表于 2025-3-29 00:07:42 | 只看該作者
https://doi.org/10.1007/978-3-8348-9573-8, the pixel resolution of images captured by traffic cameras is generally low, and there is a significant difference between the data collected during daytime and nighttime. Existing object detection algorithms don’t perform admirably on low-resolution images. To overcome these challenges, we presen
44#
發(fā)表于 2025-3-29 04:39:14 | 只看該作者
45#
發(fā)表于 2025-3-29 10:05:44 | 只看該作者
Konzepte und Kennfelder von Antrieben the single gait forms of each participant. Our goal is to utilize a dual-branch input pipeline, where each separate branch learns the gait features of each individual, aggregating the gait sequences of two different individuals to generate a complete dual-person gait sequence. Experiments conducted
46#
發(fā)表于 2025-3-29 12:30:05 | 只看該作者
47#
發(fā)表于 2025-3-29 16:33:32 | 只看該作者
https://doi.org/10.1007/978-3-642-95399-6or image classification tasks, resulting in performance degradation. Attention mechanisms can effectively improve the expressiveness of models, but most attention modules in recent studies are designed to be complex to achieve better performance. We expect to learn high-level semantic features with
48#
發(fā)表于 2025-3-29 23:37:16 | 只看該作者
49#
發(fā)表于 2025-3-30 02:48:07 | 只看該作者
50#
發(fā)表于 2025-3-30 07:44:36 | 只看該作者
Vom Kontenrahmen zum Kontenplan,els. Existing defense methods employ adversarial triplets to improve adversarial robustness but sacrifice benign performance. In this paper, we propose a novel framework for deep metric learning by introducing the concept of “Attention-Aware Knowledge Guidance”, dubbed AAKG, which not only enhances
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 01:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
安泽县| 万源市| 新密市| 根河市| 延庆县| 古浪县| 外汇| 平远县| 广宁县| 榆社县| 荃湾区| 潮安县| 正蓝旗| 大姚县| 玉环县| 饶河县| 温泉县| 安塞县| 弥勒县| 松江区| 甘谷县| 黄骅市| 桑日县| 集贤县| 周口市| 同德县| 洮南市| 马鞍山市| 合水县| 库伦旗| 海盐县| 昌邑市| 比如县| 定南县| 连州市| 甘泉县| 沙田区| 柳林县| 鄂托克旗| 太仓市| 团风县|