找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Tutorial on the WKB Approximation for Innovative Dirac Materials; Graphene and Beyond Andrii Iurov Book 2024 The Editor(s) (if applicable

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 03:30:05 | 只看該作者
22#
發(fā)表于 2025-3-25 10:42:17 | 只看該作者
Geometrische Funktionentheorie,cessfully employed in cutting-edge research problems, which will be addressed in detail in this chapter. Developing, formulating, and applying novel approximation methods, including the WKB, for new quantum systems remains one of the most actively explored directions in theoretical physics that will never lose its importance.
23#
發(fā)表于 2025-3-25 11:53:45 | 只看該作者
24#
發(fā)表于 2025-3-25 18:21:33 | 只看該作者
25#
發(fā)表于 2025-3-25 22:40:21 | 只看該作者
26#
發(fā)表于 2025-3-26 02:42:08 | 只看該作者
Einsatz von Workflow-Management-Systemen,ron tunneling remains one of the central research subjects in all Dirac materials mainly because of the so-called .:a complete electron transmission through a square barrier or a step for the direct incidence. We will also apply the WKB method to investigating the electron tunneling for nonuniform potentials, . , and the tunneling in . .
27#
發(fā)表于 2025-3-26 06:07:56 | 只看該作者
28#
發(fā)表于 2025-3-26 10:37:40 | 只看該作者
Introduction and Overview (2): Approximations and Calculation Techniques in Quantum Theory,cessfully employed in cutting-edge research problems, which will be addressed in detail in this chapter. Developing, formulating, and applying novel approximation methods, including the WKB, for new quantum systems remains one of the most actively explored directions in theoretical physics that will never lose its importance.
29#
發(fā)表于 2025-3-26 15:37:44 | 只看該作者
Dirac Cone Materials: Graphene and Beyond Graphene, and Kagome lattices, whose low-energy spectrum exhibits a purely flat or dispersionless band in addition to a regular Dirac cone. A finite-gap . model will be also addressed. Importantly, . also represents a rare class of materials in which the Berry phase enters their Hamiltonian directly.
30#
發(fā)表于 2025-3-26 18:37:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 12:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
清丰县| 宜兴市| 麻阳| 奉化市| 双柏县| 辉南县| 广安市| 桂林市| 德江县| 伊金霍洛旗| 三穗县| 昌宁县| 龙海市| 土默特左旗| 甘泉县| 团风县| 华蓥市| 盘锦市| 澎湖县| 江油市| 平潭县| 连云港市| 东明县| 绥中县| 涿鹿县| 昌邑市| 沅江市| 台中县| 自贡市| 安福县| 西青区| 星子县| 洪洞县| 南雄市| 青浦区| 蓝山县| 大姚县| 昆明市| 乌鲁木齐县| 城口县| 油尖旺区|