找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Averaging Methods in Nonlinear Dynamical Systems; Jan A. Sanders,Ferdinand Verhulst,James Murdock Book 2007Latest edition Springer-Verlag

[復(fù)制鏈接]
樓主: 不讓做的事
31#
發(fā)表于 2025-3-26 22:41:01 | 只看該作者
32#
發(fā)表于 2025-3-27 02:01:54 | 只看該作者
Invariant Manifolds by Averaging,ms, a basic approach is to locate and to characterize the classical ingredients of such systems. These ingredients are critical points (equilibrium solutions), periodic solutions, invariant manifolds (in particular quasiperiodic tori), homoclinics, heteroclinics, and in general stable and unstable manifolds of special solutions.
33#
發(fā)表于 2025-3-27 08:34:07 | 只看該作者
34#
發(fā)表于 2025-3-27 13:03:16 | 只看該作者
Applied Mathematical Scienceshttp://image.papertrans.cn/b/image/166957.jpg
35#
發(fā)表于 2025-3-27 15:01:04 | 只看該作者
Averaging Methods in Nonlinear Dynamical Systems978-0-387-48918-6Series ISSN 0066-5452 Series E-ISSN 2196-968X
36#
發(fā)表于 2025-3-27 20:17:18 | 只看該作者
https://doi.org/10.1007/978-3-642-94414-7eeping” of averaging calculations, averaging systems containing “slow time”, ways to remove the nonuniqueness of the averaging transformation, and the relationship between averaging and the method of multiple scales.
37#
發(fā)表于 2025-3-27 22:18:07 | 只看該作者
https://doi.org/10.1007/978-3-642-48555-8ms, a basic approach is to locate and to characterize the classical ingredients of such systems. These ingredients are critical points (equilibrium solutions), periodic solutions, invariant manifolds (in particular quasiperiodic tori), homoclinics, heteroclinics, and in general stable and unstable manifolds of special solutions.
38#
發(fā)表于 2025-3-28 05:09:50 | 只看該作者
https://doi.org/10.1007/978-0-387-48918-6Dynamical; Methods; Nonlinear; Systems; bifurcation; differential equation; partial differential equation;
39#
發(fā)表于 2025-3-28 09:23:57 | 只看該作者
978-1-4419-2376-9Springer-Verlag New York 2007
40#
發(fā)表于 2025-3-28 10:38:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 16:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德兴市| 小金县| 潢川县| 曲阜市| 丽江市| 会宁县| 无棣县| 隆回县| 正蓝旗| 广德县| 长宁县| 石阡县| 福州市| 垣曲县| 蓝田县| 溆浦县| 全州县| 高尔夫| 搜索| 慈利县| 通江县| 交城县| 贵定县| 日喀则市| 观塘区| 博兴县| 富蕴县| 仙游县| 中西区| 镇沅| 崇州市| 石楼县| 土默特右旗| 罗江县| 巴塘县| 威远县| 桑植县| 项城市| 鄢陵县| 屯留县| 郧西县|