找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Averaging Methods in Nonlinear Dynamical Systems; Jan A. Sanders,Ferdinand Verhulst,James Murdock Book 2007Latest edition Springer-Verlag

[復(fù)制鏈接]
樓主: 不讓做的事
31#
發(fā)表于 2025-3-26 22:41:01 | 只看該作者
32#
發(fā)表于 2025-3-27 02:01:54 | 只看該作者
Invariant Manifolds by Averaging,ms, a basic approach is to locate and to characterize the classical ingredients of such systems. These ingredients are critical points (equilibrium solutions), periodic solutions, invariant manifolds (in particular quasiperiodic tori), homoclinics, heteroclinics, and in general stable and unstable manifolds of special solutions.
33#
發(fā)表于 2025-3-27 08:34:07 | 只看該作者
34#
發(fā)表于 2025-3-27 13:03:16 | 只看該作者
Applied Mathematical Scienceshttp://image.papertrans.cn/b/image/166957.jpg
35#
發(fā)表于 2025-3-27 15:01:04 | 只看該作者
Averaging Methods in Nonlinear Dynamical Systems978-0-387-48918-6Series ISSN 0066-5452 Series E-ISSN 2196-968X
36#
發(fā)表于 2025-3-27 20:17:18 | 只看該作者
https://doi.org/10.1007/978-3-642-94414-7eeping” of averaging calculations, averaging systems containing “slow time”, ways to remove the nonuniqueness of the averaging transformation, and the relationship between averaging and the method of multiple scales.
37#
發(fā)表于 2025-3-27 22:18:07 | 只看該作者
https://doi.org/10.1007/978-3-642-48555-8ms, a basic approach is to locate and to characterize the classical ingredients of such systems. These ingredients are critical points (equilibrium solutions), periodic solutions, invariant manifolds (in particular quasiperiodic tori), homoclinics, heteroclinics, and in general stable and unstable manifolds of special solutions.
38#
發(fā)表于 2025-3-28 05:09:50 | 只看該作者
https://doi.org/10.1007/978-0-387-48918-6Dynamical; Methods; Nonlinear; Systems; bifurcation; differential equation; partial differential equation;
39#
發(fā)表于 2025-3-28 09:23:57 | 只看該作者
978-1-4419-2376-9Springer-Verlag New York 2007
40#
發(fā)表于 2025-3-28 10:38:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 21:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
聂拉木县| 津南区| 台东市| 扎赉特旗| 吴旗县| 宜丰县| 屏山县| 高州市| 页游| 宜兰市| 赞皇县| 西充县| 桦甸市| 邮箱| 眉山市| 祁门县| 兴和县| 铜川市| 九江市| 灵武市| 南澳县| 天长市| 大渡口区| 固镇县| 深泽县| 湖南省| 遂宁市| 金乡县| 乌兰察布市| 左贡县| 海林市| 仁怀市| 新巴尔虎右旗| 洪江市| 高碑店市| 常德市| 灵台县| 周宁县| 黔江区| 锦屏县| 娱乐|