找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automorphisms in Birational and Affine Geometry; Levico Terme, Italy, Ivan Cheltsov,Ciro Ciliberto,Mikhail Zaidenberg Conference proceeding

[復(fù)制鏈接]
樓主: 惡化
31#
發(fā)表于 2025-3-27 00:09:41 | 只看該作者
32#
發(fā)表于 2025-3-27 02:49:49 | 只看該作者
33#
發(fā)表于 2025-3-27 05:44:30 | 只看該作者
34#
發(fā)表于 2025-3-27 12:29:08 | 只看該作者
https://doi.org/10.1007/978-3-662-13391-0the structure of the automorphism group of this variety. Here we review some consequences of this structure and generalize some results to other hypersurfaces which arise as deformations of Koras–Russell threefolds.
35#
發(fā)表于 2025-3-27 14:52:52 | 只看該作者
36#
發(fā)表于 2025-3-27 17:46:25 | 只看該作者
978-3-319-34749-3Springer International Publishing Switzerland 2014
37#
發(fā)表于 2025-3-27 21:58:05 | 只看該作者
On Automorphisms and Endomorphisms of Projective Varietiesive variety. Then we show that very few connected algebraic semigroups can be realized as endomorphisms of some projective variety ., by describing the structure of all connected subsemigroup schemes of End(.).
38#
發(fā)表于 2025-3-28 05:20:33 | 只看該作者
39#
發(fā)表于 2025-3-28 07:46:46 | 只看該作者
40#
發(fā)表于 2025-3-28 11:54:52 | 只看該作者
The Jacobian Conjecture, Together with Specht and Burnside-Type Problemsexander Vladimirovich Yagzhev (1951–2001), whose works have only been partially published. This approach also indicates some very close connections between mathematical physics, universal algebra, and automorphisms of polynomial algebras.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 23:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
北川| 宜章县| 邵阳市| 新巴尔虎右旗| 新津县| 清丰县| 敦化市| 安丘市| 盘锦市| 普陀区| 曲阜市| 察哈| 瑞安市| 泉州市| 偏关县| 芦山县| 仁化县| 涿州市| 呈贡县| 迁安市| 北海市| 马鞍山市| 顺昌县| 遂平县| 凤翔县| 新绛县| 得荣县| 开原市| 灌南县| 仪陇县| 连山| 北票市| 朝阳市| 兴和县| 正阳县| 九江市| 宝山区| 慈溪市| 金寨县| 资源县| 灵武市|