找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automorphisms in Birational and Affine Geometry; Levico Terme, Italy, Ivan Cheltsov,Ciro Ciliberto,Mikhail Zaidenberg Conference proceeding

[復制鏈接]
樓主: 惡化
11#
發(fā)表于 2025-3-23 12:33:23 | 只看該作者
12#
發(fā)表于 2025-3-23 14:34:59 | 只看該作者
Au(III) Series with ,C,N and ,N,N′ LigandsWe survey some results on the nonrationality and birational rigidity of certain hypersurfaces of Fano type. The focus is on hypersurfaces of Fano index one, but hypersurfaces of higher index are also discussed.
13#
發(fā)表于 2025-3-23 21:39:32 | 只看該作者
Probing Gold: X-Ray Absorption SpectroscopyWe show that the Zariski closure of the set of hypersurfaces of degree . in ., where . ≥ 5, which are either not factorial or not birationally superrigid, is of codimension at least . in the parameter space.
14#
發(fā)表于 2025-3-23 23:23:56 | 只看該作者
https://doi.org/10.1057/9781137471369This is a survey of some results on the structure and classification of normal analytic compactifications of .. Mirroring the existing literature, we especially emphasize the compactifications for which the curve at infinity is irreducible.
15#
發(fā)表于 2025-3-24 04:45:05 | 只看該作者
16#
發(fā)表于 2025-3-24 07:17:15 | 只看該作者
17#
發(fā)表于 2025-3-24 13:35:16 | 只看該作者
https://doi.org/10.1007/978-3-319-06707-0Let . be an algebraically closed field of characteristic zero. Given a polynomial . with one place at infinity, we prove that either . is equivalent to a coordinate, or the family . has at most two rational elements. When . has two rational elements, we give a description of the singularities of these two elements.
18#
發(fā)表于 2025-3-24 16:32:21 | 只看該作者
19#
發(fā)表于 2025-3-24 21:28:17 | 只看該作者
Del Pezzo Surfaces and Local InequalitiesI prove new local inequality for divisors on smooth surfaces, describe its applications, and compare it to a similar local inequality that is already known by experts.
20#
發(fā)表于 2025-3-24 23:50:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 11:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
阳原县| 玉龙| 普定县| 浦城县| 舞钢市| 永丰县| 来安县| 朔州市| 龙井市| 南江县| 贵州省| 营山县| 双城市| 峡江县| 镇巴县| 望江县| 天全县| 娱乐| 铅山县| 泾阳县| 射阳县| 马山县| 沧源| 磴口县| 涡阳县| 岑溪市| 玛曲县| 樟树市| 宿迁市| 抚顺县| 三明市| 仙居县| 安丘市| 顺昌县| 梅河口市| 京山县| 雷波县| 越西县| 宜昌市| 罗山县| 兰溪市|