找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Automorphic Pseudodifferential Analysis and Higher Level Weyl Calculi; André Unterberger Book 2003 Springer Basel AG 2003 Calc.DEX.Dirac.M

[復(fù)制鏈接]
樓主: 支票
11#
發(fā)表于 2025-3-23 10:47:44 | 只看該作者
Automorphic Distributions and the Weyl Calculus,The defining formula of the Weyl calculus [68] is
12#
發(fā)表于 2025-3-23 15:52:06 | 只看該作者
13#
發(fā)表于 2025-3-23 21:06:27 | 只看該作者
14#
發(fā)表于 2025-3-24 00:11:27 | 只看該作者
15#
發(fā)表于 2025-3-24 02:45:04 | 只看該作者
Introduction,y - ., up to a negligible set - one point in each Γ-orbit. A . is an automorphic function on Π which is at the same time a generalized eigenfunction of the Laplace-Beltrami operator Δ for some eigenvalue ..
16#
發(fā)表于 2025-3-24 06:42:03 | 只看該作者
Joseph M. Siracusa,Laurens J. Vissery - ., up to a negligible set - one point in each Γ-orbit. A . is an automorphic function on Π which is at the same time a generalized eigenfunction of the Laplace-Beltrami operator Δ for some eigenvalue ..
17#
發(fā)表于 2025-3-24 10:52:46 | 只看該作者
18#
發(fā)表于 2025-3-24 17:49:52 | 只看該作者
Gold Clusters, Colloids and Nanoparticles IIent. Last, let us indicate that, as has been proved by Bechata [5], the present formula extends to the p-adic Weyl calculus (dealing with complex-valued functions on p-adic numbers), while, again, the Moyal-type formula would be meaningless.
19#
發(fā)表于 2025-3-24 19:06:19 | 只看該作者
20#
發(fā)表于 2025-3-25 01:00:54 | 只看該作者
Further Perspectives,ent. Last, let us indicate that, as has been proved by Bechata [5], the present formula extends to the p-adic Weyl calculus (dealing with complex-valued functions on p-adic numbers), while, again, the Moyal-type formula would be meaningless.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 07:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
措美县| 宕昌县| 贵州省| 湖南省| 福贡县| 惠州市| 洪江市| 东港市| 榆林市| 江口县| 柘城县| 肃北| 沅江市| 沈阳市| 大安市| 开远市| 仙游县| 甘肃省| 连江县| 江北区| 吐鲁番市| 五原县| 当阳市| 边坝县| 额尔古纳市| 浦北县| 武汉市| 松潘县| 景宁| 三河市| 来安县| 吴川市| 金川县| 彭山县| 阿瓦提县| 喀喇沁旗| 冕宁县| 左贡县| 宝兴县| 聂拉木县| 曲周县|