找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automorphic Forms, Representation Theory and Arithmetic; Papers presented at Gelbart Harder Iwasawa,Jacquet Katz Piatetski-Shap Conference

[復制鏈接]
樓主: necrosis
31#
發(fā)表于 2025-3-27 00:53:10 | 只看該作者
32#
發(fā)表于 2025-3-27 03:56:52 | 只看該作者
33#
發(fā)表于 2025-3-27 08:23:21 | 只看該作者
Derivatives of L-Series at s = 0,ned, especially for certain types of characters [6; II, III, IV]. It is appropriate to present a paper on this subject here since it was at the Tata Institute that the complex quadratic case was treated in the lectures of Siegel [4] and later work of Ramachandra [3]. It has become clear in recent ye
34#
發(fā)表于 2025-3-27 11:04:05 | 只看該作者
35#
發(fā)表于 2025-3-27 14:10:14 | 只看該作者
36#
發(fā)表于 2025-3-27 19:38:23 | 只看該作者
,War and Controversy: 1940–1945,essarily totally real) algebraic number field. At the time of the Bombay Colloquium (1979), H. M. Stark orally communicated to the author that he has obtained such a result for non-real cubic fields. His oral communication was an initial impetus to the present work. The author wishes to express his gratitude to Stark.
37#
發(fā)表于 2025-3-28 00:16:44 | 只看該作者
38#
發(fā)表于 2025-3-28 05:11:53 | 只看該作者
Sabine Bollig,Sabrina G?bel,Angelika Sichmas of Eisenstein series, and L. is the continuous part of the spectrum, given by integrals of Eisenstein series. If . is a function of compact support or of sufficiently rapid decay on G, then convolution with . defines an endomorphism T. of L.(.G), and the kernel function ..
39#
發(fā)表于 2025-3-28 08:10:24 | 只看該作者
A Remark on Zeta Functions of Algebraic Number Fields,essarily totally real) algebraic number field. At the time of the Bombay Colloquium (1979), H. M. Stark orally communicated to the author that he has obtained such a result for non-real cubic fields. His oral communication was an initial impetus to the present work. The author wishes to express his gratitude to Stark.
40#
發(fā)表于 2025-3-28 11:05:08 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
常德市| 绥宁县| 宝清县| 江永县| 江都市| 永康市| 肃南| 九江县| 宣化县| 那坡县| 云和县| 阿鲁科尔沁旗| 遵义市| 柞水县| 香格里拉县| 武隆县| 天全县| 新和县| 全州县| 武穴市| 科技| 南宁市| 碌曲县| 城步| 庄河市| 东辽县| 梓潼县| 梅河口市| 洞口县| 当阳市| 农安县| 四川省| 镇雄县| 金川县| 集贤县| 邯郸县| 黄陵县| 荣昌县| 鹤岗市| 西乌珠穆沁旗| 楚雄市|