找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Automorphic Forms; Research in Number T Bernhard Heim,Mehiddin Al-Baali,Florian Rupp Conference proceedings 2014 Springer International Pub

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 21:07:03 | 只看該作者
32#
發(fā)表于 2025-3-27 02:14:39 | 只看該作者
https://doi.org/10.1007/978-3-319-11352-4Borcherds Products; Discontinuous Groups and Automorphic Forms; Jacobi Forms; Number Theory; Siegel and
33#
發(fā)表于 2025-3-27 07:09:35 | 只看該作者
34#
發(fā)表于 2025-3-27 10:11:45 | 只看該作者
35#
發(fā)表于 2025-3-27 15:27:44 | 只看該作者
36#
發(fā)表于 2025-3-27 21:40:45 | 只看該作者
37#
發(fā)表于 2025-3-28 00:23:45 | 只看該作者
https://doi.org/10.1007/978-1-4020-6164-6special cases .?=?.. and .. In this case we can show that the pullback is an embedding and we study the dependency on the choice of .. Combining this with earlier results of Krieg, we can define a family of index-raising operators ..?→?.. for all ., which interpolate the operators . defined by Eichler and Zagier.
38#
發(fā)表于 2025-3-28 03:21:31 | 只看該作者
39#
發(fā)表于 2025-3-28 09:59:05 | 只看該作者
https://doi.org/10.1007/978-1-4020-8893-3n result is an explicit relation between a Bessel period of some theta lift to the indefinite symplectic group .(1, 1) and the central value of an .-function of convolution type for the lift (cf. Theorem 3.2).
40#
發(fā)表于 2025-3-28 13:30:03 | 只看該作者
Fuzzy Controllers In Goguen Categories,We give some conditions for polynomial systems of integer congruences to have infinitely or finitely many solutions in positive integers. Some of these conditions use the degrees of the polynomial, while others are more specific cases for certain special polynomials, mainly quadratic or cubic.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 05:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
河东区| 新竹县| 台安县| 民丰县| 怀远县| 稻城县| 东海县| 江西省| 铁岭县| 曲松县| 连平县| 靖西县| 盘山县| 新邵县| 馆陶县| 临清市| 阿克苏市| 襄樊市| 聂拉木县| 赤壁市| 环江| 普兰店市| 大理市| 梨树县| 临清市| 湘潭县| 雅江县| 平谷区| 丹阳市| 衡南县| 丰顺县| 香格里拉县| 临夏县| 东港市| 安丘市| 江永县| 佛山市| 措勤县| 中宁县| 南开区| 延长县|