找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automatic Speech Recognition; A Deep Learning Appr Dong Yu,Li Deng Book 2015 Springer-Verlag London 2015 Adaptive Training.Automatic Speech

[復(fù)制鏈接]
樓主: advocate
41#
發(fā)表于 2025-3-28 15:08:41 | 只看該作者
42#
發(fā)表于 2025-3-28 21:07:39 | 只看該作者
43#
發(fā)表于 2025-3-29 01:23:54 | 只看該作者
44#
發(fā)表于 2025-3-29 03:31:15 | 只看該作者
Deep Neural Network Sequence-Discriminative Trainingximum mutual information (MMI), boosted MMI (BMMI), minimum phone error (MPE), and minimum Bayes risk (MBR) training criteria, and discuss the practical techniques, including lattice generation, lattice compensation, frame dropping, frame smoothing, and learning rate adjustment, to make DNN sequence-discriminative training effective.
45#
發(fā)表于 2025-3-29 10:14:37 | 只看該作者
Representation Sharing and Transfer in Deep Neural Networksared and transferred across related tasks through techniques such as multitask and transfer learning. We will use multilingual and crosslingual speech recognition as the main example, which uses a shared-hidden-layer DNN architecture, to demonstrate these techniques.
46#
發(fā)表于 2025-3-29 12:32:20 | 只看該作者
-Pseudo-Differential Operators,raining, and subspace methods. We further show that adaptation in DNNs can bring significant error rate reduction at least for some speech recognition tasks and thus is as important as that in the GMM systems.
47#
發(fā)表于 2025-3-29 15:44:35 | 只看該作者
Lewis R. Gordon,LaRose T. Parrisesents a matrix operation upon its children. We describe algorithms to carry out forward computation and gradient calculation in CN and introduce most popular computation node types used in a typical CN.
48#
發(fā)表于 2025-3-29 20:57:49 | 只看該作者
Adaptation of Deep Neural Networksraining, and subspace methods. We further show that adaptation in DNNs can bring significant error rate reduction at least for some speech recognition tasks and thus is as important as that in the GMM systems.
49#
發(fā)表于 2025-3-30 03:07:43 | 只看該作者
50#
發(fā)表于 2025-3-30 06:01:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
友谊县| 钟山县| 理塘县| 嘉鱼县| 六盘水市| 乌兰浩特市| 武乡县| 莒南县| 泗洪县| 新巴尔虎左旗| 嵩明县| 淮安市| 进贤县| 西和县| 咸阳市| 竹山县| 潼关县| 双辽市| 湾仔区| 柘城县| 昌黎县| 京山县| 兴城市| 昌都县| 巧家县| 伊宁县| 本溪| 淮北市| 三河市| 册亨县| 高碑店市| 天津市| 得荣县| 通河县| 岑溪市| 托克托县| 溧水县| 河南省| 德惠市| 台东县| 兰西县|