找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Automatic Nonuniform Random Variate Generation; Wolfgang H?rmann,Josef Leydold,Gerhard Derflinger Book 2004 Springer-Verlag Berlin Heidelb

[復(fù)制鏈接]
樓主: Remodeling
11#
發(fā)表于 2025-3-23 11:43:29 | 只看該作者
12#
發(fā)表于 2025-3-23 14:53:55 | 只看該作者
13#
發(fā)表于 2025-3-23 20:52:08 | 只看該作者
14#
發(fā)表于 2025-3-23 23:28:52 | 只看該作者
Markov Chain Monte Carlo Methodspractical point of view limited to small dimensions up to at most 10. And there are lots of distributions that are even difficult to sample from in dimension three or four. A totally different approach is based on the fact that we always can easily construct a Markov chain that has the desired fixed
15#
發(fā)表于 2025-3-24 03:33:16 | 只看該作者
16#
發(fā)表于 2025-3-24 06:42:35 | 只看該作者
Introductionible” of random variate generation. We can certainly say that random variate generation has become an accepted research area considered as a subarea of statistical computing and simulation methodology. Practically all text-books on discrete event simulation or Monte Carlo methods include at least on
17#
發(fā)表于 2025-3-24 12:19:24 | 只看該作者
Transformed Density Rejection (TDR) has been published by Gilks and Wild (1992) under the name .. The use of a general transformation and the name . was suggested by H?rmann (1995). In this presentation we try to develop the idea such that the reader can also see the (in our opinion) “beautiful” mathematical background (Sects. 4.2–4.
18#
發(fā)表于 2025-3-24 16:15:59 | 只看該作者
19#
發(fā)表于 2025-3-24 22:35:22 | 只看該作者
20#
發(fā)表于 2025-3-25 00:15:33 | 只看該作者
Li-Shih Huang,Raj Khatri,Amjad Alhemaidor random vector generation. For many of these families the marginals are known as well. The monograph of Johnson (1987) is presenting this branch of multivariate simulation. You can also find many of these distributions in Devroye (1986a, Chap. XI).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 16:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南充市| 锦屏县| 隆子县| 丹阳市| 运城市| 漠河县| 临海市| 如东县| 汝城县| 宜黄县| 利川市| 东宁县| 田林县| 锦州市| 西乌| 西藏| 仪陇县| 隆化县| 庆城县| 上林县| 大兴区| 麻江县| 永靖县| 三门峡市| 通州市| 津南区| 阳信县| 同德县| 正阳县| 临沭县| 揭西县| 吉木萨尔县| 合江县| 廊坊市| 江津市| 互助| 池州市| 庆阳市| 界首市| 绵竹市| 蒲江县|