找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automated Reasoning with Analytic Tableaux and Related Methods; International Confer Uwe Egly,Chritian G. Fermüller Conference proceedings

[復(fù)制鏈接]
樓主: Buchanan
31#
發(fā)表于 2025-3-26 22:54:36 | 只看該作者
32#
發(fā)表于 2025-3-27 02:16:24 | 只看該作者
Analytic Tableau Systems for Propositional Bimodal Logics of Knowledge and Belief5 (for ..), and both of the axioms . and 5 (for ..). As analytic sequent-like tableau systems, our calculi give simple decision procedures for reasoning about both knowledge and belief in the mentioned logics.
33#
發(fā)表于 2025-3-27 05:31:51 | 只看該作者
A General Theorem Prover for Quantified Modal Logics and third authors. Moreover, the work presents a theorem prover, called ., based on such a calculus, which is accessible in the Internet. The fair deterministic proof-search strategy used by the prover is described and illustrated via a meaningful example.
34#
發(fā)表于 2025-3-27 12:14:24 | 只看該作者
35#
發(fā)表于 2025-3-27 16:33:55 | 只看該作者
A Simplified Clausal Resolution Procedure for Propositional Linear-Time Temporal Logic method is based on an intuitive clausal form, called SNF, comprising three main clause types and a small number of resolution rules. In this paper, we show how the normal form can be radically simplified and, consequently, how a simplified clausal resolution method can be defined for this important variety of logic.
36#
發(fā)表于 2025-3-27 19:42:58 | 只看該作者
37#
發(fā)表于 2025-3-28 00:24:40 | 只看該作者
A Model Generation Style Completeness Proof for Constraint Tableaux with Superposition by an adaptation of the . [.,.] technique commonly used for completeness proofs of resolution calculi. The calculi and the completeness proof are compared to earlier results of Degtyarev and Voronkov [.].
38#
發(fā)表于 2025-3-28 03:35:58 | 只看該作者
Analytic Sequent Calculi for Abelian and ?ukasiewicz Logicsith characteristic model ?, motivated in [.] as a logic of . and in [.] as a logic of .. We also show that the so-called . of . coincides with ?ukasiewicz’s infinite-valued logic ., hence giving us as a significant by-product, labelled and unlabelled analytic sequent calculi for ..
39#
發(fā)表于 2025-3-28 07:06:40 | 只看該作者
40#
發(fā)表于 2025-3-28 10:32:00 | 只看該作者
0302-9743 Overview: Includes supplementary material: 978-3-540-43929-5978-3-540-45616-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 11:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
竹溪县| 鹿泉市| 嵩明县| 通江县| 张掖市| 嘉黎县| 绥化市| 大理市| 乌什县| 内黄县| 四子王旗| 滕州市| 肇源县| 神池县| 同仁县| 福贡县| 襄樊市| 武川县| 鄯善县| 郧西县| 日喀则市| 团风县| 夏河县| 金门县| 东丰县| 崇文区| 长乐市| 柳江县| 泽库县| 西乌珠穆沁旗| 海南省| 遵化市| 闽清县| 余干县| 延津县| 白河县| 内丘县| 平潭县| 广东省| 巴青县| 九龙城区|