找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Automated Reasoning; 10th International J Nicolas Peltier,Viorica Sofronie-Stokkermans Conference proceedings 2020 Springer Nature Switzerl

[復(fù)制鏈接]
查看: 38905|回復(fù): 64
樓主
發(fā)表于 2025-3-21 17:50:22 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Automated Reasoning
期刊簡(jiǎn)稱10th International J
影響因子2023Nicolas Peltier,Viorica Sofronie-Stokkermans
視頻videohttp://file.papertrans.cn/167/166327/166327.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Automated Reasoning; 10th International J Nicolas Peltier,Viorica Sofronie-Stokkermans Conference proceedings 2020 Springer Nature Switzerl
影響因子.This two-volume set LNAI 12166 and 12167 constitutes the refereed proceedings of the 10th International Joint Conference on Automated Reasoning, IJCAR 2020, held in Paris, France, in July 2020.* In 2020, IJCAR was a merger of the following leading events, namely CADE (International Conference on Automated Deduction), FroCoS (International Symposium on Frontiers of Combining Systems), ITP (International Conference on Interactive Theorem Proving), and TABLEAUX (International Conference on Analytic Tableaux and Related Methods)..The 46 full research papers, 5 short papers, and 11 system descriptions presented together with two invited talks were carefully reviewed and selected from 150 submissions. The papers focus on the following topics:.Part I: SAT; SMT and QBF; decision procedures and combination of theories; superposition; proof procedures; non classical logics.Part II: interactive theorem proving/ HOL; formalizations; verification; reasoning systems and tools.*The conference was held virtually due to the COVID-19 pandemic...Chapter ‘A Fast Verified Liveness Analysis in SSA Form’ is available open access under a Creative Commons Attribution 4.0 International License via link.spr
Pindex Conference proceedings 2020
The information of publication is updating

書(shū)目名稱Automated Reasoning影響因子(影響力)




書(shū)目名稱Automated Reasoning影響因子(影響力)學(xué)科排名




書(shū)目名稱Automated Reasoning網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Automated Reasoning網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Automated Reasoning被引頻次




書(shū)目名稱Automated Reasoning被引頻次學(xué)科排名




書(shū)目名稱Automated Reasoning年度引用




書(shū)目名稱Automated Reasoning年度引用學(xué)科排名




書(shū)目名稱Automated Reasoning讀者反饋




書(shū)目名稱Automated Reasoning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:10:35 | 只看該作者
Reasoning About Algebraic Structures with Implicit Carriers in Isabelle/HOLctures in addition to reasoning in algebraic structures. We present an approach for this using classes and locales with implicit carriers. This involves using function liftings to implement some aspects of dependent types and using embeddings of algebras to inherit theorems. We also formalise a theory of filters based on partial orders.
板凳
發(fā)表于 2025-3-22 04:15:06 | 只看該作者
地板
發(fā)表于 2025-3-22 07:52:53 | 只看該作者
Andrew Kakabadse,Nada KakabadseThis paper describes the design of the normalising tactic . for the Lean prover. This tactic improves on existing tactics by extending commutative rings with a binary exponent operator. An inductive family of types represents the normal form, enforcing various invariants. The design can also be extended with more operators.
5#
發(fā)表于 2025-3-22 09:28:49 | 只看該作者
https://doi.org/10.1057/978-1-349-94994-6A fundamental theorem states that every field admits an algebraically closed extension. Despite its central importance, this theorem has never before been formalised in a proof assistant. We fill this gap by documenting its formalisation in Isabelle/HOL, describing the difficulties that impeded this development and their solutions.
6#
發(fā)表于 2025-3-22 15:03:39 | 只看該作者
7#
發(fā)表于 2025-3-22 20:51:06 | 只看該作者
8#
發(fā)表于 2025-3-23 00:09:34 | 只看該作者
Algebraically Closed Fields in Isabelle/HOLA fundamental theorem states that every field admits an algebraically closed extension. Despite its central importance, this theorem has never before been formalised in a proof assistant. We fill this gap by documenting its formalisation in Isabelle/HOL, describing the difficulties that impeded this development and their solutions.
9#
發(fā)表于 2025-3-23 01:28:20 | 只看該作者
Formalization of Forcing in Isabelle/ZFWe formalize the theory of forcing in the set theory framework of Isabelle/ZF. Under the assumption of the existence of a countable transitive model of ., we construct a proper generic extension and show that the latter also satisfies .. In doing so, we remodularized Paulson’s . library.
10#
發(fā)表于 2025-3-23 08:15:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 05:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
防城港市| 陇西县| 滨州市| 东城区| 大关县| 定州市| 牟定县| 贡觉县| 东至县| 年辖:市辖区| 三都| 渑池县| 且末县| 隆昌县| 壶关县| 磐石市| 潜山县| 鄱阳县| 元江| 正镶白旗| 翁源县| 达拉特旗| 昭平县| 泾川县| 安达市| 陕西省| 黎平县| 德保县| 山丹县| 石楼县| 海阳市| 广宁县| 拉孜县| 文山县| 华阴市| 隆德县| 渭源县| 湛江市| 韶山市| 梧州市| 南昌市|