找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Automated Deduction in Geometry; 9th International Wo Tetsuo Ida,Jacques Fleuriot Conference proceedings 2013 Springer-Verlag Berlin Heidel

[復(fù)制鏈接]
樓主: 帳簿
41#
發(fā)表于 2025-3-28 18:13:01 | 只看該作者
Conference proceedings 2013, held in Edinburgh, UK, in September 2012. The 10 revised full papers presented together with 2 invited papers were carefully selected during two rounds of reviewing and improvement from the lectures given at the workshop. The conference represents a forum to exchange ideas and views, to present re
42#
發(fā)表于 2025-3-28 19:50:12 | 只看該作者
Proof and Computation in Geometry, to algebraic computations. But this does not produce computer-checkable first-order proofs in geometry. We might try to produce such proofs directly, or we might try to develop a “back-translation” from algebra to geometry, following Descartes but with computer in hand. This paper discusses the rel
43#
發(fā)表于 2025-3-29 00:49:08 | 只看該作者
44#
發(fā)表于 2025-3-29 03:25:54 | 只看該作者
Improving Angular Speed Uniformity by ,, Piecewise Reparameterization, . piecewise M?bius transformation. By making use of the information provided by the first derivative of the angular speed function, the unit interval is partitioned such that the obtained reparameterization has high uniformity and continuous angular speed. An iteration process is used to refine the
45#
發(fā)表于 2025-3-29 10:57:13 | 只看該作者
Extending the Descartes Circle Theorem for Steiner ,-Cycles,r bases or resultants for the equations of inscribed or circumscribed circles. As a result, we deduced several relations that could be called the Descartes circle theorem for .?≥ 4. We succeeded in computing the defining polynomials of circumradii with degrees 4, 24, and 48, for . = 4, 5, and 6, res
46#
發(fā)表于 2025-3-29 13:58:00 | 只看該作者
47#
發(fā)表于 2025-3-29 18:51:09 | 只看該作者
48#
發(fā)表于 2025-3-29 23:45:55 | 只看該作者
From Tarski to Hilbert,s of the first twelve chapters of Schwab?user, Szmielew and Tarski’s book: .. The proofs are checked formally within classical logic using the Coq proof assistant. The goal of this development is to provide clear foundations for other formalizations of geometry and implementations of decision proced
49#
發(fā)表于 2025-3-30 03:44:45 | 只看該作者
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 13:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汶上县| 孝感市| 五峰| 甘肃省| 阿拉善右旗| 微博| 江川县| 石城县| 杭州市| 香河县| 腾冲县| 繁峙县| 梁平县| 交口县| 旌德县| 旬阳县| 衢州市| 西昌市| 阳泉市| 桐城市| 高淳县| 桑植县| 阳东县| 绿春县| 西青区| 方正县| 潼南县| 宁南县| 成都市| 阳谷县| 新化县| 黎川县| 夏邑县| 双桥区| 当雄县| 昭平县| 资兴市| 广东省| 柳州市| 都昌县| 喀喇沁旗|