找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automated Deduction in Geometry; 8th International Wo Pascal Schreck,Julien Narboux,Jürgen Richter-Geber Conference proceedings 2011 Spring

[復制鏈接]
樓主: GLOAT
11#
發(fā)表于 2025-3-23 11:13:19 | 只看該作者
12#
發(fā)表于 2025-3-23 16:40:23 | 只看該作者
13#
發(fā)表于 2025-3-23 19:41:43 | 只看該作者
14#
發(fā)表于 2025-3-23 23:20:44 | 只看該作者
https://doi.org/10.1007/3-540-33092-5try creates new geometric objects (circles or conics) which can also be considered as (level 1) lines, in the sense that they fulfil Pappus axioms for lines. But Pappus theory also applies to these new lines. A formalization of Pappus geometry should enable to automatize these generalizations of lin
15#
發(fā)表于 2025-3-24 03:59:41 | 只看該作者
16#
發(fā)表于 2025-3-24 07:57:06 | 只看該作者
Finding or Acquiring Giant Deposits, . is to create an appropriate context for testing and evaluating geometric automated theorem proving systems (GATP). For that purpose . provides a centralised common library of geometric problems with an already significant size but aiming to became large enough to ensure meaningful system evaluati
17#
發(fā)表于 2025-3-24 10:47:27 | 只看該作者
Explanations, Abbreviations, Units,ctive proof assistant. Our tool exploits concurrency, inferring facts independently of the user with the incomplete proof as a guide. It explores the proof space, contributes tedious lemmas and discovers alternative proofs. We show how this tool allowed us to write readable formalised proof-scripts
18#
發(fā)表于 2025-3-24 17:38:04 | 只看該作者
19#
發(fā)表于 2025-3-24 19:42:20 | 只看該作者
Sedimentary Associations and Regolith,ctly deals with the . rather than the geometric quantities. We propose two algorithms, . and ., which can deal with the Hilbert intersection point statements in affine geometry and the linear constructive geometry statements in metric geometry respectively. The two algorithms are implemented in . as
20#
發(fā)表于 2025-3-24 23:57:43 | 只看該作者
Automated Deduction in Geometry978-3-642-25070-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 02:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
谷城县| 内丘县| 屏东市| 遂平县| 黎平县| 通许县| 正安县| 确山县| 东城区| 台南市| 拜城县| 冷水江市| 康定县| 襄城县| 黑山县| 西贡区| 织金县| 乐山市| 徐闻县| 丰台区| 永新县| 饶河县| 彭阳县| 连云港市| 台州市| 北辰区| 来凤县| 侯马市| 莱州市| 黄平县| 无极县| 明星| 汝南县| 鹤壁市| 蕲春县| 甘泉县| 永城市| 富裕县| 若尔盖县| 云霄县| 炎陵县|