找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automata, Languages, and Programming; 39th International C Artur Czumaj,Kurt Mehlhorn,Roger Wattenhofer Conference proceedings 2012 Springe

[復(fù)制鏈接]
樓主: GUST
51#
發(fā)表于 2025-3-30 09:19:58 | 只看該作者
Sparse Fault-Tolerant Spanners for Doubling Metrics with Bounded Hop-Diameter or Degreefunction..Finally, we construct a fault-tolerant single-sink spanner with bounded maximum degree, and use it to reduce the maximum degree of our basic .-VFTS. As a result, we get a .-VFTS with .(...) edges and maximum degree .(..).
52#
發(fā)表于 2025-3-30 13:49:37 | 只看該作者
Node-Weighted Network Design in Planar and Minor-Closed Families of Graphsth maximum requirement .. Our result is inspired by, and generalizes, the work of Demaine, Hajiaghayi and Klein [5] who gave constant factor approximation algorithms for node-weighted Steiner tree and Steiner forest problems (and more generally covering 0-1 proper functions) in planar and minor-closed families of graphs.
53#
發(fā)表于 2025-3-30 16:35:15 | 只看該作者
54#
發(fā)表于 2025-3-30 21:17:48 | 只看該作者
https://doi.org/10.1007/978-3-8349-9576-6 groups in time, polynomial in the order and simply exponential in the degree; (b) the introduction of the “twisted code equivalence problem,” a generalization of the classical code equivalence problem by admitting a group action on the alphabet. Both of these problems are of independent interest.
55#
發(fā)表于 2025-3-31 03:59:27 | 只看該作者
56#
發(fā)表于 2025-3-31 07:40:33 | 只看該作者
Polynomial-Time Isomorphism Test for Groups with No Abelian Normal Subgroups groups in time, polynomial in the order and simply exponential in the degree; (b) the introduction of the “twisted code equivalence problem,” a generalization of the classical code equivalence problem by admitting a group action on the alphabet. Both of these problems are of independent interest.
57#
發(fā)表于 2025-3-31 12:30:35 | 只看該作者
58#
發(fā)表于 2025-3-31 13:43:21 | 只看該作者
59#
發(fā)表于 2025-3-31 20:01:45 | 只看該作者
60#
發(fā)表于 2025-4-1 00:20:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 16:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平南县| 托克托县| 金门县| 南城县| 滦南县| 章丘市| 宜阳县| 上蔡县| 海阳市| 金平| 灵寿县| 朝阳县| 武定县| 门头沟区| 峨边| 邮箱| 普格县| 河南省| 皮山县| 山阴县| 南和县| 海原县| 凌云县| 南京市| 台安县| 柳河县| 台中县| 枣阳市| 化德县| 安庆市| 册亨县| 平乐县| 桐乡市| 宾阳县| 柏乡县| 南平市| 思茅市| 内丘县| 泗阳县| 红河县| 博野县|