找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Automata, Languages and Programming; 24th International C Pierpaolo Degano,Roberto Gorrieri,Alberto Marchett Conference proceedings 1997 Sp

[復(fù)制鏈接]
樓主: hector
51#
發(fā)表于 2025-3-30 10:38:26 | 只看該作者
52#
發(fā)表于 2025-3-30 14:10:19 | 只看該作者
978-3-540-63165-1Springer-Verlag Berlin Heidelberg 1997
53#
發(fā)表于 2025-3-30 19:57:33 | 只看該作者
54#
發(fā)表于 2025-3-31 00:07:31 | 只看該作者
55#
發(fā)表于 2025-3-31 04:06:14 | 只看該作者
Tilings and quasiperiodicity,it was introduced for representing quasicrystals and it is also motivated by the study of quasiperiodic words. We prove that if a tile set can tile the plane, then it can tile the plane quasiperiodically — a surprising result that does not hold for periodicity. In order to compare the regularity of
56#
發(fā)表于 2025-3-31 05:03:35 | 只看該作者
57#
發(fā)表于 2025-3-31 10:53:13 | 只看該作者
58#
發(fā)表于 2025-3-31 15:22:02 | 只看該作者
An abstract data type for real numbers,ity of the calculus (i.e. every computable element is definable). We address the general problem of providing an operational semantics to calculi for the real numbers. We present a possible solution based on a new representation for the real numbers.
59#
發(fā)表于 2025-3-31 17:52:03 | 只看該作者
Recursive computational depth,ure. In particular, Bennett identified the classes of . and . sequences, and showed that the halting problem is strongly deep. Juedes, Lathrop, and Lutz subsequently extended this result by defining the class of . sequences, and proving that every weakly useful sequence is strongly deep..The present
60#
發(fā)表于 2025-3-31 23:56:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 11:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
仁布县| 社会| 安化县| 竹北市| 宿松县| 德惠市| 讷河市| 台北县| 南澳县| 张家口市| 新巴尔虎左旗| 胶南市| 桦甸市| 周口市| 来安县| 贵南县| 霞浦县| 武威市| 郯城县| 金沙县| 故城县| 明溪县| 泾阳县| 新巴尔虎左旗| 铁岭县| 邓州市| 尼勒克县| 炎陵县| 锡林浩特市| 淮安市| 贡嘎县| 分宜县| 南投市| 井陉县| 上饶县| 崇州市| 永登县| 正定县| 承德县| 德兴市| 云浮市|