找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Audio- and Video-Based Biometric Person Authentication; 5th International Co Takeo Kanade,Anil Jain,Nalini K. Ratha Conference proceedings

[復(fù)制鏈接]
51#
發(fā)表于 2025-3-30 12:05:37 | 只看該作者
52#
發(fā)表于 2025-3-30 14:33:39 | 只看該作者
Magnetic Fields in Irregular Galaxieslarity measure is adopted as the matching criterion. Four wavelet filters containing Haar, Daubechies-8, Biorthogonal 3.5, and Biorthogonal 4.4 are evaluated and they all perform better than the feature of Gaussian-Hermite moments. Experimental results demonstrate that the proposed features can provide promising performance for iris recognition.
53#
發(fā)表于 2025-3-30 19:36:06 | 只看該作者
54#
發(fā)表于 2025-3-30 22:24:03 | 只看該作者
Head-on collisions and rings of fire,eference subspace, representing learnt identity. To extract effective features for identification both subspaces are projected onto multiple constraint subspaces. For generating constraint subspaces we apply ensemble learning algorithms, i.e. Bagging and Boosting. Through experimental results we show the effectiveness of our method.
55#
發(fā)表于 2025-3-31 04:40:52 | 只看該作者
https://doi.org/10.1007/978-94-009-4702-3ngle hand-labeled model graph. We apply the model to the representation, recognition and reconstruction of nine different facial expressions. After training, the model is capable of automatically finding facial landmarks, extracting deformation parameters and reconstructing faces in any of the learned expressions.
56#
發(fā)表于 2025-3-31 05:42:51 | 只看該作者
57#
發(fā)表于 2025-3-31 11:30:55 | 只看該作者
Specific Texture Analysis for Iris Recognitionn the CASIA database in verification mode and show an EER of 0.07%. Degraded version of the CASIA database results in an EER of 2.3%, which is lower than result obtained by the classical wavelet demodulation (WD) method in that database.
58#
發(fā)表于 2025-3-31 16:43:22 | 只看該作者
Face Recognition with the Multiple Constrained Mutual Subspace Methodeference subspace, representing learnt identity. To extract effective features for identification both subspaces are projected onto multiple constraint subspaces. For generating constraint subspaces we apply ensemble learning algorithms, i.e. Bagging and Boosting. Through experimental results we show the effectiveness of our method.
59#
發(fā)表于 2025-3-31 20:35:56 | 只看該作者
A Flexible Object Model for Recognising and Synthesising Facial Expressionsngle hand-labeled model graph. We apply the model to the representation, recognition and reconstruction of nine different facial expressions. After training, the model is capable of automatically finding facial landmarks, extracting deformation parameters and reconstructing faces in any of the learned expressions.
60#
發(fā)表于 2025-3-31 22:42:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 21:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
文登市| 吉隆县| 丹江口市| 嘉荫县| 句容市| 洪洞县| 神农架林区| 长春市| 乳源| 巴马| 交口县| 双牌县| 怀仁县| 马鞍山市| 太仆寺旗| 遂平县| 涿州市| 三江| 阿坝| 滁州市| 和平县| 扶余县| 罗定市| 平山县| 邵东县| 金山区| 成武县| 清水县| 句容市| 武义县| 剑河县| 马鞍山市| 洛阳市| 慈利县| 囊谦县| 苏尼特左旗| 清徐县| 仙游县| 青岛市| 琼海市| 韩城市|