找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Attractivity and Bifurcation for Nonautonomous Dynamical Systems; Martin Rasmussen Book 2007 Springer-Verlag Berlin Heidelberg 2007 Nonaut

[復(fù)制鏈接]
樓主: 胃口
31#
發(fā)表于 2025-3-26 21:14:23 | 只看該作者
Notions of Attractivity and Bifurcation,for nonautonomous dynamical systems. By a bifurcation and transition, a qualitative change of attractivity or repulsivity is meant. Due to the nonautonomous framework, it is distinguished between four distinct points of view concerning di.erent time domains. The notions of attractivity and repulsivi
32#
發(fā)表于 2025-3-27 01:23:05 | 只看該作者
Nonautonomous Morse Decompositions,s intersections of attractors and repellers. In this chapter, nonautonomous generalizations of the Morse decomposition are established with respect to the notions of past and future attractivity and repulsivity. The dynamical properties of these decompositions are discussed, and nonautonomous Lyapun
33#
發(fā)表于 2025-3-27 05:39:14 | 只看該作者
LinearSystems,ues requires linear theory. This is due to the fact that in many cases, stability properties of solutions can be derived from the linearization along the solution, the so-called variational equation. In this chapter, methods are provided for the analysis of linear systems with respect to the notions
34#
發(fā)表于 2025-3-27 13:26:48 | 只看該作者
Nonlinear Systems,r an equilibrium, a periodic solution or—in the nonautonomous context—an arbitrary solution. The construction of stable and unstable invariant manifolds goes back to . [136] and . [73]. In the sequel, the theory was extended from hyperbolic to nonhyperbolic systems, from finite to infinite dimension
35#
發(fā)表于 2025-3-27 14:46:51 | 只看該作者
Bifurcations in Dimension One,pitchfork bifurcation, both for nonautonomous bifurcations and transitions..In this chapter, only the continuous case of ordinary differential equations is treated. For analogous results in the context of difference equations, see . [145].
36#
發(fā)表于 2025-3-27 19:40:40 | 只看該作者
9樓
37#
發(fā)表于 2025-3-27 22:02:13 | 只看該作者
9樓
38#
發(fā)表于 2025-3-28 05:32:53 | 只看該作者
9樓
39#
發(fā)表于 2025-3-28 09:15:39 | 只看該作者
9樓
40#
發(fā)表于 2025-3-28 11:26:38 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 05:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贵南县| 昌黎县| 右玉县| 施秉县| 龙陵县| 观塘区| 利辛县| 修文县| 故城县| 新疆| 建湖县| 苍南县| 望都县| 馆陶县| 黄大仙区| 新巴尔虎右旗| 新和县| 凯里市| 凤台县| 二手房| 当阳市| 祁阳县| 肥城市| 文登市| 苗栗县| 延长县| 偃师市| 黄山市| 江口县| 洪湖市| 伊金霍洛旗| 金华市| 马龙县| 湛江市| 兴城市| 龙里县| 含山县| 广元市| 太仆寺旗| 宁明县| 宁晋县|