找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Attractivity and Bifurcation for Nonautonomous Dynamical Systems; Martin Rasmussen Book 2007 Springer-Verlag Berlin Heidelberg 2007 Nonaut

[復制鏈接]
樓主: 胃口
11#
發(fā)表于 2025-3-23 11:40:55 | 只看該作者
Guillaume Flandin,Marianne J. U. Novaks intersections of attractors and repellers. In this chapter, nonautonomous generalizations of the Morse decomposition are established with respect to the notions of past and future attractivity and repulsivity. The dynamical properties of these decompositions are discussed, and nonautonomous Lyapun
12#
發(fā)表于 2025-3-23 15:17:15 | 只看該作者
13#
發(fā)表于 2025-3-23 18:01:25 | 只看該作者
14#
發(fā)表于 2025-3-23 22:35:48 | 只看該作者
Lucie Hertz-Pannier,Marion Noulhianepitchfork bifurcation, both for nonautonomous bifurcations and transitions..In this chapter, only the continuous case of ordinary differential equations is treated. For analogous results in the context of difference equations, see . [145].
15#
發(fā)表于 2025-3-24 04:43:56 | 只看該作者
Attractivity and Bifurcation for Nonautonomous Dynamical Systems
16#
發(fā)表于 2025-3-24 08:08:49 | 只看該作者
17#
發(fā)表于 2025-3-24 11:48:32 | 只看該作者
18#
發(fā)表于 2025-3-24 16:36:59 | 只看該作者
Guillaume Flandin,Marianne J. U. Novak the notions of past and future attractivity and repulsivity. The dynamical properties of these decompositions are discussed, and nonautonomous Lyapunov functions which are constant on the Morse sets are constructed explicitly. Furthermore, Morse decompositions of one-dimensional and linear systems are analyzed.
19#
發(fā)表于 2025-3-24 20:58:30 | 只看該作者
Christoph Kayser,Nikos K. Logothetisthe solution, the so-called variational equation. In this chapter, methods are provided for the analysis of linear systems with respect to the notions of attractivity and repulsivity which have been introduced in Chapter 2.
20#
發(fā)表于 2025-3-25 01:19:58 | 只看該作者
Neuroanatomy and Cortical Landmarksds goes back to . [136] and . [73]. In the sequel, the theory was extended from hyperbolic to nonhyperbolic systems, from finite to infinite dimension and from time-independent to time-dependent equations.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 20:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
水富县| 桃园市| 和静县| 邻水| 蛟河市| 呈贡县| 林芝县| 平昌县| 金塔县| 翁源县| 迭部县| 左权县| 沾益县| 东至县| 大名县| 荔浦县| 西丰县| 紫金县| 陵川县| 封开县| 隆林| 阿拉善右旗| 乃东县| 盘山县| 宜都市| 杭锦后旗| 昭通市| 满洲里市| 高安市| 萨迦县| 扶余县| 汨罗市| 疏附县| 石台县| 竹北市| 舞钢市| 西盟| 乌鲁木齐市| 汉阴县| 邢台市| 城固县|