找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Attacks, Defenses and Testing for Deep Learning; Jinyin Chen,Ximin Zhang,Haibin Zheng Book 2024 The Editor(s) (if applicable) and The Auth

[復(fù)制鏈接]
樓主: risky-drinking
21#
發(fā)表于 2025-3-25 07:07:54 | 只看該作者
Jinyin Chen,Ximin Zhang,Haibin ZhengThe security problems of different data modes, different model structures and different tasks are fully considered.The attack problems are comprehensively studied, and the system flow of the attack-de
22#
發(fā)表于 2025-3-25 08:38:33 | 只看該作者
http://image.papertrans.cn/b/image/164877.jpg
23#
發(fā)表于 2025-3-25 13:22:20 | 只看該作者
24#
發(fā)表于 2025-3-25 19:16:00 | 只看該作者
25#
發(fā)表于 2025-3-25 20:00:01 | 只看該作者
Adversarial Attacks on?GNN-Based Vertical Federated Learningllected from users, GNN may struggle to deliver optimal performance due to the lack of rich features and complete adjacent relationships. To address this challenge, a solution called vertical federated learning (VFL) has been proposed, which aims to protect local data privacy by training a global mo
26#
發(fā)表于 2025-3-26 01:50:32 | 只看該作者
A Novel DNN Object Contour Attack on?Image Recognitioneptible to adversarial examples. Currently, the primary focus of research on generating adversarial examples is to improve the attack success rate (ASR) while minimizing the perturbation size. Through the visualization of heatmaps, previous studies have identified that the feature extraction capabil
27#
發(fā)表于 2025-3-26 04:58:09 | 只看該作者
Query-Efficient Adversarial Attack Against Vertical Federated Graph Learninga. However, the performance of GNN is limited by distributing data silos. Vertical federated learning (VFL) enables GNN to process distributed graph-structured data. While vertical federated graph learning (VFGL) has experienced prosperous development, its robustness against adversarial attacks has
28#
發(fā)表于 2025-3-26 08:30:04 | 只看該作者
Targeted Label Adversarial Attack on?Graph Embedding The increasing interest in graph mining has led to the development of attack methods on graph embedding. Most of these attack methods aim to generate perturbations that maximize the deviation of prediction confidence. However, they often struggle to accurately misclassify instances into the desired
29#
發(fā)表于 2025-3-26 13:15:32 | 只看該作者
30#
發(fā)表于 2025-3-26 19:37:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 05:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桐乡市| 那曲县| 石楼县| 讷河市| 莫力| 新民市| 望江县| 吉安市| 栾城县| 康保县| 抚顺市| 河东区| 临漳县| 屏东市| 积石山| 于田县| 阿尔山市| 兴业县| 新邵县| 益阳市| 青州市| 耿马| 社旗县| 江源县| 三门峡市| 瑞安市| 南江县| 安达市| 淄博市| 百色市| 常德市| 抚松县| 双辽市| 河池市| 中方县| 扎赉特旗| 景洪市| 松滋市| 林甸县| 子长县| 正安县|