找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Atomicity through Fractal Measure Theory; Mathematical and Phy Alina Gavrilu?,Ioan Merche?,Maricel Agop Book 2019 Springer Nature Switzerla

[復(fù)制鏈接]
樓主: duodenum
21#
發(fā)表于 2025-3-25 04:31:57 | 只看該作者
Atomicity via regularity for non-additive set multifunctions,In this chapter, atomicity is discussed via regularity for set multifunctions taking values in the family of all non- void subsets of a topological space.
22#
發(fā)表于 2025-3-25 11:35:06 | 只看該作者
Extended atomicity through non-differentiability and its physical implications,In this chapter, atomicity is presented via quantum measure theory and some of its physical applications are highlighted. Precisely, the mathematical concept of (minimal) atomicity is extended from a physical perspective, based on the non-differentiability of motion curves.
23#
發(fā)表于 2025-3-25 13:55:26 | 只看該作者
24#
發(fā)表于 2025-3-25 19:02:23 | 只看該作者
http://image.papertrans.cn/b/image/164805.jpg
25#
發(fā)表于 2025-3-25 22:14:24 | 只看該作者
26#
發(fā)表于 2025-3-26 03:43:53 | 只看該作者
Book 2019lications to quantum physics and, more generally, to the fractal theory of the motion, are highlighted. The study details the atomicity problem through key concepts, such as the atom/pseudoatom, atomic/nonatomic measures, and different types of non-additive set-valued multifunctions. Additionally, a
27#
發(fā)表于 2025-3-26 06:32:58 | 只看該作者
Book 2019The mathematical perspective is presented first and the discussion moves on to connect measure theory and quantum physics through quantum measure theory. New avenues of research, such as fractal/multifractal measure theory with potentialapplications in life sciences, are opened..
28#
發(fā)表于 2025-3-26 09:29:45 | 只看該作者
On a multifractal theory of motion in a non-differentiable space: Toward a possible multifractal th
29#
發(fā)表于 2025-3-26 15:58:31 | 只看該作者
30#
發(fā)表于 2025-3-26 20:47:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 09:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广元市| 乌什县| 东乡| 安康市| 迁安市| 乐安县| 新野县| 成都市| 项城市| 通河县| 宜兰市| 衡阳市| 桦川县| 镇远县| 宁津县| 石门县| 灵璧县| 凭祥市| 灵石县| 古田县| 万载县| 石河子市| 若尔盖县| 濮阳县| 香港| 泾川县| 汝州市| 南岸区| 繁峙县| 沭阳县| 通许县| 洪湖市| 民勤县| 宕昌县| 平凉市| 阿克陶县| 崇阳县| 蓬安县| 长阳| 葵青区| 金阳县|